ZKSCAN3 promotes bladder cancer cell proliferation, migration, and invasion

Takashi Kawahara, Satoshi Inoue, Hiroki Ide, Eiji Kashiwagi, Shinji Ohtake, Taichi Mizushima, Peng Li, Yi Li, Yichun Zheng, Hiroji Uemura, George J. Netto, Hitoshi Ishiguro, Hiroshi Miyamoto

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The expression status of ZKSCAN3, a zinc-finger transcription factor containing KRAB and SCAN domains, as well as its biological significance, in human bladder cancer remains largely unknown. In the current study, we aimed to determine the functional role of ZKSCAN3 in bladder cancer progression. Immunohistochemistry in tissue specimens detected ZKSCAN3 signals in 138 (93.2%) of 148 urothelial neoplasms, which was significantly higher than in non-neoplastic urothelial tissues [76 (84.4%) of 90; P=0.044]. Correspondingly, the levels of ZKSCAN3 gene were significantly elevated in bladder tumors, compared with those in adjacent normalappearing bladder mucosae (P=0.008). In a validation set of tissue microarray, significantly higher ZKSCAN3 expression was observed in high-grade and/or muscleinvasive urothelial carcinomas than in low-grade and/or non-muscle-invasive tumors. Two bladder cancer cell lines, UMUC3 and 647V, were found to strongly express ZKSCAN3 protein/mRNA, whereas its expression in 5637 bladder cancer and SVHUC normal urothelium cell lines was very weak. ZKSCAN3 silencing via its short hairpin RNA (shRNA) in UMUC3 and 647V resulted in significant decreases in cell viability/colony formation, cell migration/invasion, and the expression of matrix metalloproteinase (MMP)-2/MMP-9 and oncogenes c-myc/FGFR3, as well as significant increases in apoptosis and the expression of tumor suppressor genes p53/PTEN. ZKSCAN3 overexpression in 5637 also induced cell growth and migration. In addition, ZKSCAN3-shRNA expression considerably retarded tumor formation as well as its subsequent growth in xenograft-bearing mice. These results suggest that ZKSCAN3 plays an important role in bladder cancer outgrowth. Thus, ZKSCAN3 inhibition has the potential of being a therapeutic approach for bladder cancer.

Original languageEnglish (US)
Pages (from-to)53599-53610
Number of pages12
JournalOncotarget
Volume7
Issue number33
DOIs
StatePublished - Aug 1 2016

Keywords

  • Bladder cancer
  • Immunohistochemistry
  • Tumor progression
  • ZKSCAN3

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'ZKSCAN3 promotes bladder cancer cell proliferation, migration, and invasion'. Together they form a unique fingerprint.

Cite this