Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex

Emerson V. Stewart, Christine C. Nwosu, Zongtian Tong, Assen Roguev, Timothy D. Cummins, Dong Uk Kim, Jacqueline Hayles, Han Oh Park, Kwang Lae Hoe, David W. Powell, Nevan J. Krogan, Peter Espenshade

Research output: Contribution to journalArticle

Abstract

Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.

Original languageEnglish (US)
Pages (from-to)160-171
Number of pages12
JournalMolecular Cell
Volume42
Issue number2
DOIs
StatePublished - Apr 22 2011

Fingerprint

Sterol Regulatory Element Binding Proteins
Ubiquitin-Protein Ligases
Yeasts
Schizosaccharomyces
Proteasome Endopeptidase Complex
Endoplasmic Reticulum-Associated Degradation
Multivesicular Bodies
Saccharomycetales
Ubiquitin
Biochemistry
Proteolysis
Homeostasis
Fungi
Transcription Factors
Lipids
Membranes
Enzymes
Genes

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Cite this

Stewart, E. V., Nwosu, C. C., Tong, Z., Roguev, A., Cummins, T. D., Kim, D. U., ... Espenshade, P. (2011). Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex. Molecular Cell, 42(2), 160-171. https://doi.org/10.1016/j.molcel.2011.02.035

Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex. / Stewart, Emerson V.; Nwosu, Christine C.; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D.; Kim, Dong Uk; Hayles, Jacqueline; Park, Han Oh; Hoe, Kwang Lae; Powell, David W.; Krogan, Nevan J.; Espenshade, Peter.

In: Molecular Cell, Vol. 42, No. 2, 22.04.2011, p. 160-171.

Research output: Contribution to journalArticle

Stewart, EV, Nwosu, CC, Tong, Z, Roguev, A, Cummins, TD, Kim, DU, Hayles, J, Park, HO, Hoe, KL, Powell, DW, Krogan, NJ & Espenshade, P 2011, 'Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex', Molecular Cell, vol. 42, no. 2, pp. 160-171. https://doi.org/10.1016/j.molcel.2011.02.035
Stewart EV, Nwosu CC, Tong Z, Roguev A, Cummins TD, Kim DU et al. Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex. Molecular Cell. 2011 Apr 22;42(2):160-171. https://doi.org/10.1016/j.molcel.2011.02.035
Stewart, Emerson V. ; Nwosu, Christine C. ; Tong, Zongtian ; Roguev, Assen ; Cummins, Timothy D. ; Kim, Dong Uk ; Hayles, Jacqueline ; Park, Han Oh ; Hoe, Kwang Lae ; Powell, David W. ; Krogan, Nevan J. ; Espenshade, Peter. / Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex. In: Molecular Cell. 2011 ; Vol. 42, No. 2. pp. 160-171.
@article{a782df532fc341298ce0eafb80259d9b,
title = "Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex",
abstract = "Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.",
author = "Stewart, {Emerson V.} and Nwosu, {Christine C.} and Zongtian Tong and Assen Roguev and Cummins, {Timothy D.} and Kim, {Dong Uk} and Jacqueline Hayles and Park, {Han Oh} and Hoe, {Kwang Lae} and Powell, {David W.} and Krogan, {Nevan J.} and Peter Espenshade",
year = "2011",
month = "4",
day = "22",
doi = "10.1016/j.molcel.2011.02.035",
language = "English (US)",
volume = "42",
pages = "160--171",
journal = "Molecular Cell",
issn = "1097-2765",
publisher = "Cell Press",
number = "2",

}

TY - JOUR

T1 - Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex

AU - Stewart, Emerson V.

AU - Nwosu, Christine C.

AU - Tong, Zongtian

AU - Roguev, Assen

AU - Cummins, Timothy D.

AU - Kim, Dong Uk

AU - Hayles, Jacqueline

AU - Park, Han Oh

AU - Hoe, Kwang Lae

AU - Powell, David W.

AU - Krogan, Nevan J.

AU - Espenshade, Peter

PY - 2011/4/22

Y1 - 2011/4/22

N2 - Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.

AB - Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.

UR - http://www.scopus.com/inward/record.url?scp=79954525510&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79954525510&partnerID=8YFLogxK

U2 - 10.1016/j.molcel.2011.02.035

DO - 10.1016/j.molcel.2011.02.035

M3 - Article

C2 - 21504829

AN - SCOPUS:79954525510

VL - 42

SP - 160

EP - 171

JO - Molecular Cell

JF - Molecular Cell

SN - 1097-2765

IS - 2

ER -