Weakly Supervised Prostate Tma Classification Via Graph Convolutional Networks

Jingwen Wang, Richard J. Chen, Ming Y. Lu, Alexander Baras, Faisal Mahmood

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Histology-based grade classification is clinically important for many cancer types in stratifying patients into distinct treatment groups. In prostate cancer, the Gleason score is a grading system used to measure the aggressiveness of prostate cancer from the spatial organization of cells and the distribution of glands. However, the subjective interpretation of Glea-son score often suffers from large interobserver and intraob-server variability. Previous work in deep learning-based objective Gleason grading requires manual pixel-level annotation. In this work, we propose a weakly-supervised approach for grade classification in tissue micro-arrays (TMA) using graph convolutional networks (GCNs), in which we model the spatial organization of cells as a graph to better capture the proliferation and community structure of tumor cells. We learn the morphometry of each cell using a contrastive predictive coding (CPC)-based self-supervised approach. Using five-fold cross-validation we demonstrate that our method can achieve a 0.9637 ± 0.0131 AUC using only TMA-level labels. Our method also demonstrates a 36.36% improvement in AUC over standard GCNs with texture features and a 15.48% improvement over GCNs with VGG19 features. Our proposed pipeline can be used to objectively stratify low and high-risk cases, reducing inter- and intra-observer variability and pathologist workload.

Original languageEnglish (US)
Title of host publicationISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
Pages239-243
Number of pages5
ISBN (Electronic)9781538693308
DOIs
StatePublished - Apr 2020
Event17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 - Iowa City, United States
Duration: Apr 3 2020Apr 7 2020

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2020-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference17th IEEE International Symposium on Biomedical Imaging, ISBI 2020
CountryUnited States
CityIowa City
Period4/3/204/7/20

Keywords

  • Deep Learning
  • Gleason Score Grading
  • Graph Convolutional Networks
  • Histopathology Calassification
  • Objective Grading
  • Patient Stratification

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Weakly Supervised Prostate Tma Classification Via Graph Convolutional Networks'. Together they form a unique fingerprint.

Cite this