Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS

Qing Chang, Lee J Martin

Research output: Contribution to journalArticle

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca2+ overload have mostly focused on Ca2+ influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca2+ channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93 → Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca2+ currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca2+ currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca2+ current mediated by L-type Ca2+ channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca2+ currents may result from upregulation of Ca2+ channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca2+ channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca2+ channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca2+ currents and PCCa current could contribute to early pathogenesis of ALS.

Original languageEnglish (US)
Pages (from-to)78-95
Number of pages18
JournalNeurobiology of Disease
Volume93
DOIs
StatePublished - Sep 1 2016

Fingerprint

Amyotrophic Lateral Sclerosis
Motor Neurons
Calcium Channels
Transgenic Mice
Cell Membrane
Carisoprodol
Dendrites
Messenger RNA
AMPA Receptors
Glutamate Receptors
Ion Channels
Confocal Microscopy
Neurodegenerative Diseases
Spinal Cord
Up-Regulation
Immunohistochemistry

Keywords

  • Calcium channel localization
  • G93A-SOD1 mice
  • High voltage activated Ca currents
  • Persistent Ca current
  • Quantitative single-cell RT-PCR
  • Whole-cell patch-clamp

ASJC Scopus subject areas

  • Neurology

Cite this

@article{137ccfa2995e4a3daf636d0ee1acc8ea,
title = "Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS",
abstract = "Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca2+ overload have mostly focused on Ca2+ influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca2+ channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93 → Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca2+ currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca2+ currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca2+ current mediated by L-type Ca2+ channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca2+ currents may result from upregulation of Ca2+ channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca2+ channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca2+ channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca2+ currents and PCCa current could contribute to early pathogenesis of ALS.",
keywords = "Calcium channel localization, G93A-SOD1 mice, High voltage activated Ca currents, Persistent Ca current, Quantitative single-cell RT-PCR, Whole-cell patch-clamp",
author = "Qing Chang and Martin, {Lee J}",
year = "2016",
month = "9",
day = "1",
doi = "10.1016/j.nbd.2016.04.009",
language = "English (US)",
volume = "93",
pages = "78--95",
journal = "Neurobiology of Disease",
issn = "0969-9961",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS

AU - Chang, Qing

AU - Martin, Lee J

PY - 2016/9/1

Y1 - 2016/9/1

N2 - Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca2+ overload have mostly focused on Ca2+ influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca2+ channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93 → Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca2+ currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca2+ currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca2+ current mediated by L-type Ca2+ channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca2+ currents may result from upregulation of Ca2+ channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca2+ channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca2+ channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca2+ currents and PCCa current could contribute to early pathogenesis of ALS.

AB - Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca2+ overload have mostly focused on Ca2+ influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca2+ channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93 → Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca2+ currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca2+ currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca2+ current mediated by L-type Ca2+ channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca2+ currents may result from upregulation of Ca2+ channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca2+ channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca2+ channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca2+ currents and PCCa current could contribute to early pathogenesis of ALS.

KW - Calcium channel localization

KW - G93A-SOD1 mice

KW - High voltage activated Ca currents

KW - Persistent Ca current

KW - Quantitative single-cell RT-PCR

KW - Whole-cell patch-clamp

UR - http://www.scopus.com/inward/record.url?scp=84966701587&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966701587&partnerID=8YFLogxK

U2 - 10.1016/j.nbd.2016.04.009

DO - 10.1016/j.nbd.2016.04.009

M3 - Article

C2 - 27151771

AN - SCOPUS:84966701587

VL - 93

SP - 78

EP - 95

JO - Neurobiology of Disease

JF - Neurobiology of Disease

SN - 0969-9961

ER -