Visual design and verification tool for collision-free dexterous patient specific neurosurgical instruments

Maggie Hess, Kyle Eastwood, Bence Linder, Vivek Bodani, Andras Lasso, Thomas Looi, Gabor Fichtinger, James Drake

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

PURPOSE: In many minimally invasive neurosurgical procedures, the surgical workspace is a small tortuous cavity that is accessed using straight, rigid instruments with limited dexterity. Specifically considering neuroendoscopy, it is often challenging for surgeons, using standard instruments, to reach multiple surgical targets from a single incision. To address this problem, continuum tools are under development to create highly dexterous minimally invasive instruments. However, this design process is not trivial, and therefore, a user-friendly design platform capable of easily incorporating surgeon input is needed. METHODS: We propose a method that uses simulation and visual verification to design continuum tools that are patient and procedure specific. Our software module utilizes pre-operative scans and virtual threedimensional (3D) patient models to intuitively aid instrument design. The user specifies basic tool parameters and the parameterized tools and trocar are modeled within the virtual patient. By selecting and dragging the instrument models, the tools are instantly reshaped and repositioned. The tool geometry and surgical entry points are then returned as outputs to undergo optimization. We have completed an initial validation of the software by comparing a simulation of a physical instrument's reachability to the corresponding virtual design. RESULTS AND CONCLUSION: The software was assessed qualitatively by two neurosurgeons, who design tools for an intraventricular endoscopic procedure. Further, validation experiments comparing the design of a virtual instrument to a physical tool demonstrate that the software module functions correctly. Thus, our platform permits user-friendly, application specific design of continuum instruments. These instruments will give surgeons much more flexibility in developing future minimally invasive procedures.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling
PublisherSPIE
Volume9786
ISBN (Electronic)9781510600218
DOIs
StatePublished - 2016
Externally publishedYes
EventMedical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, United States
Duration: Feb 28 2016Mar 1 2016

Other

OtherMedical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling
CountryUnited States
CitySan Diego
Period2/28/163/1/16

Keywords

  • 3D Slicer
  • Concentric Tubes
  • Continuum Tools
  • Image-Guided Planning
  • Neurosurgery
  • Precision Medicine
  • Surgical Tool Design
  • Visualization

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Visual design and verification tool for collision-free dexterous patient specific neurosurgical instruments'. Together they form a unique fingerprint.

Cite this