Viability and infectivity of Cryptosporidium parvum oocysts are retained upon intestinal passage through a refractory avian host

Thaddeus K. Graczyk, Michael R. Cranfield, Ronald Fayer, M. Susan Anderson

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


Six Cryptosporidium-free Peking ducks (Anas platyrhynchos) were each orally inoculated with 2.0 x 106 Cryptosporidium parvum oocysts infectious to neonatal BALB/c mice. Histological examination of the stomachs jejunums, ilea, ceca, cloacae, larynges, tracheae, and lungs of the ducks euthanized on day 7 postinoculation (p.i.) revealed no life-cycle stages of C. parvum. However, inoculum-derived oocysts extracted from duck feces established severe infection in eight neonatal BALB/c mice (inoculum dose, 2.5 x 105 per mouse). On the basis of acid-fast stained direct wet smears, 73% of the oocysts in duck feces were intact (27% were oocyst shells), and their morphological features conformed to those of viable and infectious oocysts of the original inoculum. The fluorescence scores of the inoculated oocysts, obtained by use of the MERIFLUOR test, were identical to those obtained for the feces-recovered oocysts (the majority were 3+ to 4+). The dynamics of oocyst shedding showed that the birds released a significantly higher number of intact oocysts than the oocyst shells (P < 0.01). The number of intact oocysts shed (87%) during the first 2 days p.i. was significantly higher than the number shed during the remaining 5 days p.i. (P < 0.01) and significantly decreased from day 1 to day 2 p.i. (P < 0.01). The number of oocyst shells shed during 7 days p.i. did not vary significantly (P > 0.05). The retention of infectivity of C. parvum oocysts after intestinal passage through an aquatic bird has serious epidemiological and epizootiological implications. Waterfowl may serve as mechanical vectors for the waterborne oocysts and may enhance contamination of surface waters with C. parvum. As the concentration of Cryptosporidium oocysts in source waters is attributable to watershed management practices, the watershed protection program should consider waterfowl as a potential factor enhancing contamination of the source water with C. parvum.

Original languageEnglish (US)
Pages (from-to)3234-3237
Number of pages4
JournalApplied and environmental microbiology
Issue number9
StatePublished - Sep 1996
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology


Dive into the research topics of 'Viability and infectivity of Cryptosporidium parvum oocysts are retained upon intestinal passage through a refractory avian host'. Together they form a unique fingerprint.

Cite this