Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: Implications for the mechanism of sugar phosphate transport by bacteria

S. V. Ambudkar, L. A. Sonna, P. C. Maloney

Research output: Contribution to journalArticle

Abstract

Phosphate/2-deoxyglucose 6-phosphate antiport in Streptococcus lactis showed an exchange stoichiometry that varied over a 2-fold range when assay pH was shifted between pH 8.2 and pH 5.2. At pH 7.0 and above, 2 mol of phosphate moved per mol of sugar phosphate; at pH 6.1 the ratio was 1.5:1, while at pH 5.2 the overall stoichiometry fell to 1.1:1. This pattern was not affected by valinomycin in potassium-based media, nor could variable stoichiometry be attributed to altered hydrolysis of the sugar phosphate substrate. In kinetic studies at pH 7.0 or pH 5.2, sugar 6-phosphate was a competitive inhibitor of phosphate transport, indicating operation of a single system. Parallel tests showed that the affinity of antiport for its sugar 6-phosphate substrate was insensitive to pH in this range. Overall, such results suggest a neutral exchange that has specificity for monovalent phosphate but that selects randomly among the available mono- and divalent sugar 6-phosphates. A simple model that shows this behavior suggests a mechanistic role for anion exchange in bacterial transport of sugar phosphate or other organic anions.

Original languageEnglish (US)
Pages (from-to)280-284
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume83
Issue number2
StatePublished - 1986

Fingerprint

Sugar Phosphates
Lactococcus lactis
Anions
Phosphates
Bacteria
Ion Transport
Valinomycin
Potassium
Hydrolysis

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{59883a080fb04950845ce803cb1390a1,
title = "Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: Implications for the mechanism of sugar phosphate transport by bacteria",
abstract = "Phosphate/2-deoxyglucose 6-phosphate antiport in Streptococcus lactis showed an exchange stoichiometry that varied over a 2-fold range when assay pH was shifted between pH 8.2 and pH 5.2. At pH 7.0 and above, 2 mol of phosphate moved per mol of sugar phosphate; at pH 6.1 the ratio was 1.5:1, while at pH 5.2 the overall stoichiometry fell to 1.1:1. This pattern was not affected by valinomycin in potassium-based media, nor could variable stoichiometry be attributed to altered hydrolysis of the sugar phosphate substrate. In kinetic studies at pH 7.0 or pH 5.2, sugar 6-phosphate was a competitive inhibitor of phosphate transport, indicating operation of a single system. Parallel tests showed that the affinity of antiport for its sugar 6-phosphate substrate was insensitive to pH in this range. Overall, such results suggest a neutral exchange that has specificity for monovalent phosphate but that selects randomly among the available mono- and divalent sugar 6-phosphates. A simple model that shows this behavior suggests a mechanistic role for anion exchange in bacterial transport of sugar phosphate or other organic anions.",
author = "Ambudkar, {S. V.} and Sonna, {L. A.} and Maloney, {P. C.}",
year = "1986",
language = "English (US)",
volume = "83",
pages = "280--284",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "2",

}

TY - JOUR

T1 - Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis

T2 - Implications for the mechanism of sugar phosphate transport by bacteria

AU - Ambudkar, S. V.

AU - Sonna, L. A.

AU - Maloney, P. C.

PY - 1986

Y1 - 1986

N2 - Phosphate/2-deoxyglucose 6-phosphate antiport in Streptococcus lactis showed an exchange stoichiometry that varied over a 2-fold range when assay pH was shifted between pH 8.2 and pH 5.2. At pH 7.0 and above, 2 mol of phosphate moved per mol of sugar phosphate; at pH 6.1 the ratio was 1.5:1, while at pH 5.2 the overall stoichiometry fell to 1.1:1. This pattern was not affected by valinomycin in potassium-based media, nor could variable stoichiometry be attributed to altered hydrolysis of the sugar phosphate substrate. In kinetic studies at pH 7.0 or pH 5.2, sugar 6-phosphate was a competitive inhibitor of phosphate transport, indicating operation of a single system. Parallel tests showed that the affinity of antiport for its sugar 6-phosphate substrate was insensitive to pH in this range. Overall, such results suggest a neutral exchange that has specificity for monovalent phosphate but that selects randomly among the available mono- and divalent sugar 6-phosphates. A simple model that shows this behavior suggests a mechanistic role for anion exchange in bacterial transport of sugar phosphate or other organic anions.

AB - Phosphate/2-deoxyglucose 6-phosphate antiport in Streptococcus lactis showed an exchange stoichiometry that varied over a 2-fold range when assay pH was shifted between pH 8.2 and pH 5.2. At pH 7.0 and above, 2 mol of phosphate moved per mol of sugar phosphate; at pH 6.1 the ratio was 1.5:1, while at pH 5.2 the overall stoichiometry fell to 1.1:1. This pattern was not affected by valinomycin in potassium-based media, nor could variable stoichiometry be attributed to altered hydrolysis of the sugar phosphate substrate. In kinetic studies at pH 7.0 or pH 5.2, sugar 6-phosphate was a competitive inhibitor of phosphate transport, indicating operation of a single system. Parallel tests showed that the affinity of antiport for its sugar 6-phosphate substrate was insensitive to pH in this range. Overall, such results suggest a neutral exchange that has specificity for monovalent phosphate but that selects randomly among the available mono- and divalent sugar 6-phosphates. A simple model that shows this behavior suggests a mechanistic role for anion exchange in bacterial transport of sugar phosphate or other organic anions.

UR - http://www.scopus.com/inward/record.url?scp=0022467907&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022467907&partnerID=8YFLogxK

M3 - Article

C2 - 3001731

AN - SCOPUS:0022467907

VL - 83

SP - 280

EP - 284

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 2

ER -