Validation of a low-cost adjustable, handheld needle guide for spine interventions

Julia Wiercigroch, Zachary Baum, Tamas Ungi, Jan Fritz, Gabor Fichtinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

PURPOSE: MR-guided injections are safer for the patient and the physician than CT-guided interventions but require a significant amount of hand-eye coordination and mental registration by the physician. We propose a low-cost, adjustable, handheld guide to assist the operator in aligning the needle in the correct orientation for the injection. METHODS: The operator adjusts the guide to the desired insertion angle as determined by an MRI image. Next, the operator aligns the guide in the image plane using the horizontal laser and level gradient. The needle is inserted into the sleeve of the guide and inserted into the patient. To evaluate the method, two operators inserted 5 needles in two facet joints of a lumbar spine phantom. Insertion points, final points and trajectory angles were compared to the projected needle trajectory using an electromagnetic tracking system. RESULTS: On their first attempt, operators were able to insert the needle into the facet joint 85% of the time. On average, operators had an insertion point error of 2.92 ± 1.57 mm, a target point error of 3.39 ± 2.28 mm, and a trajectory error of 3.98 ± 2.09 degrees. CONCLUSION: A low-cost, adjustable, handheld guide was developed to assist in correctly positioning a needle in MR guided needle interventions. The guide is as accurate as other needle placement assistance mechanisms, including the biplane laser guides and image overlay devices when used in lumbar facet joint injections in phantoms.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
EditorsBaowei Fei, Cristian A. Linte
PublisherSPIE
ISBN (Electronic)9781510625495
DOIs
StatePublished - 2019
EventMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, United States
Duration: Feb 17 2019Feb 19 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10951
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CitySan Diego
Period2/17/192/19/19

Keywords

  • 3D printing
  • MR-guided interventions
  • Needle guidance
  • Spinal injection

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Validation of a low-cost adjustable, handheld needle guide for spine interventions'. Together they form a unique fingerprint.

Cite this