TY - GEN
T1 - Validation of a low-cost adjustable, handheld needle guide for spine interventions
AU - Wiercigroch, Julia
AU - Baum, Zachary
AU - Ungi, Tamas
AU - Fritz, Jan
AU - Fichtinger, Gabor
N1 - Funding Information:
Financial support was received from the SEAMO Educational Innovation and Research Fund. This work was financially supported as a Collaborative Health Research Project (CHRP #127797), a joint initiative between the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR). Zachary M. C. Baum was supported by the Alexander Graham Bell Canada Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC). Gabor Fichtinger is supported as a Cancer Care Ontario Research Chair in Cancer Imaging.
Publisher Copyright:
© 2019 SPIE.
PY - 2019
Y1 - 2019
N2 - PURPOSE: MR-guided injections are safer for the patient and the physician than CT-guided interventions but require a significant amount of hand-eye coordination and mental registration by the physician. We propose a low-cost, adjustable, handheld guide to assist the operator in aligning the needle in the correct orientation for the injection. METHODS: The operator adjusts the guide to the desired insertion angle as determined by an MRI image. Next, the operator aligns the guide in the image plane using the horizontal laser and level gradient. The needle is inserted into the sleeve of the guide and inserted into the patient. To evaluate the method, two operators inserted 5 needles in two facet joints of a lumbar spine phantom. Insertion points, final points and trajectory angles were compared to the projected needle trajectory using an electromagnetic tracking system. RESULTS: On their first attempt, operators were able to insert the needle into the facet joint 85% of the time. On average, operators had an insertion point error of 2.92 ± 1.57 mm, a target point error of 3.39 ± 2.28 mm, and a trajectory error of 3.98 ± 2.09 degrees. CONCLUSION: A low-cost, adjustable, handheld guide was developed to assist in correctly positioning a needle in MR guided needle interventions. The guide is as accurate as other needle placement assistance mechanisms, including the biplane laser guides and image overlay devices when used in lumbar facet joint injections in phantoms.
AB - PURPOSE: MR-guided injections are safer for the patient and the physician than CT-guided interventions but require a significant amount of hand-eye coordination and mental registration by the physician. We propose a low-cost, adjustable, handheld guide to assist the operator in aligning the needle in the correct orientation for the injection. METHODS: The operator adjusts the guide to the desired insertion angle as determined by an MRI image. Next, the operator aligns the guide in the image plane using the horizontal laser and level gradient. The needle is inserted into the sleeve of the guide and inserted into the patient. To evaluate the method, two operators inserted 5 needles in two facet joints of a lumbar spine phantom. Insertion points, final points and trajectory angles were compared to the projected needle trajectory using an electromagnetic tracking system. RESULTS: On their first attempt, operators were able to insert the needle into the facet joint 85% of the time. On average, operators had an insertion point error of 2.92 ± 1.57 mm, a target point error of 3.39 ± 2.28 mm, and a trajectory error of 3.98 ± 2.09 degrees. CONCLUSION: A low-cost, adjustable, handheld guide was developed to assist in correctly positioning a needle in MR guided needle interventions. The guide is as accurate as other needle placement assistance mechanisms, including the biplane laser guides and image overlay devices when used in lumbar facet joint injections in phantoms.
KW - 3D printing
KW - MR-guided interventions
KW - Needle guidance
KW - Spinal injection
UR - http://www.scopus.com/inward/record.url?scp=85068933779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068933779&partnerID=8YFLogxK
U2 - 10.1117/12.2512562
DO - 10.1117/12.2512562
M3 - Conference contribution
AN - SCOPUS:85068933779
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2019
A2 - Fei, Baowei
A2 - Linte, Cristian A.
PB - SPIE
T2 - Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling
Y2 - 17 February 2019 through 19 February 2019
ER -