Validation and implementation of liquid chromatographic-mass spectrometric (LC–MS) methods for the quantification of tenofovir prodrugs

Pamela Hummert, Teresa L Parsons, Laura M. Ensign, Thuy Hoang, Mark A. Marzinke

Research output: Contribution to journalArticlepeer-review


Background: The nucleotide reverse transcriptase inhibitor tenofovir (TFV) is widely administered in a disoproxil prodrug form (tenofovir disoproxil fumarate, TDF) for HIV management and prevention. Recently, novel prodrugs tenofovir alafenamide fumarate (TAF) and hexadecyloxypropyl tenofovir (CMX157) have been pursued for HIV treatment while minimizing adverse effects associated with systemic TFV exposure. Dynamic and sensitive bioanalytical tools are required to characterize the pharmacokinetics of these prodrugs in systemic circulation. Two parallel methods have been developed, one to combinatorially quantify TAF and TFV, and a second method for CMX157 quantification, in plasma. Methods: K2EDTA plasma was spiked with TAF and TFV, or CMX157. Following the addition of isotopically labeled internal standards and sample extraction via solid phase extraction (TAF and TFV) or protein precipitation (CMX157), samples were subjected to liquid chromatographic-tandem mass spectrometric (LC–MS/MS) analysis. For TAF and TFV, separation occurred using a Zorbax Eclipse Plus C18 Narrow Bore RR, 2.1 × 50 mm, 3.5 μm column and analytes were detected on an API5000 mass analyzer; CMX157 was separated using a Kinetex C8, 2.1 × 50 mm, 2.6 μm column and quantified using an API4500 mass spectrometer. Methods were validated according to FDA Bioanalytical Method Validation guidelines. Results: Analytical methods: were optimized for the multiplexed monitoring of TAF and TFV, and CMX157 in plasma. The lower limits of quantification (LLOQs) for TAF, TFV, and CMX157 were 0.03, 1.0, and 0.25 ng/mL, respectively. Calibration curves were generated via weighted linear regression of standards. Intra- and inter-assay precision and accuracy studies demonstrated %CVs ≤ 14.4% and %DEVs ≤ ± 7.95%, respectively. Stability and matrix effects studies were also performed. All results were acceptable and in accordance with the recommended guidelines for bioanalytical methods. Assays were also applied to quantify in vivo concentrations of prodrugs and TFV in a preclinical study post-rectal administration. Conclusions: Sensitive, specific, and dynamic LC–MS/MS assays have been developed and validated for the multiplexed quantification TAF and TFV, as well as an independent assay for CMX157 quantification, in plasma. The described methods meet sufficient throughput criteria to support large research trials.

Original languageEnglish (US)
Pages (from-to)248-256
Number of pages9
JournalJournal of Pharmaceutical and Biomedical Analysis
StatePublished - Apr 15 2018


  • Antiretroviral
  • HIV
  • LC–MS/MS
  • Prodrug
  • Tenofovir
  • Validation

ASJC Scopus subject areas

  • Analytical Chemistry
  • Pharmaceutical Science
  • Drug Discovery
  • Spectroscopy
  • Clinical Biochemistry

Fingerprint Dive into the research topics of 'Validation and implementation of liquid chromatographic-mass spectrometric (LC–MS) methods for the quantification of tenofovir prodrugs'. Together they form a unique fingerprint.

Cite this