Using frequency-labeled exchange transfer to separate out conventional magnetization transfer effects from exchange transfer effects when detecting ParaCEST agents

Chien Yuan Lin, Nirbhay N. Yadav, Joshua I. Friedman, James Ratnakar, A. Dean Sherry, Peter C.M. Van Zijl

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Paramagnetic chemical exchange saturation transfer agents combine the benefits of a large chemical shift difference and a fast exchange rate for sensitive MRI detection. However, the in vivo detection of these agents is hampered by the need for high B1 fields to allow sufficiently fast saturation before exchange occurs, thus causing interference of large magnetization transfer effects from semisolid macromolecules. A recently developed approach named frequency-labeled exchange transfer utilizes excitation pulses instead of saturation pulses for detecting the exchanging protons. Using solutions and gel phantoms containing the europium (III) complex of DOTA tetraglycinate (EuDOTA-(gly)-4), it is shown that frequency-labeled exchange transfer allows the separation of chemical exchange effects and magnetization transfer (MT) effects in the time domain, therefore allowing the study of the individual resonance of rapidly exchanging water molecules (kex >104 s-1) without interference from conventional broad-band MT.

Original languageEnglish (US)
Pages (from-to)906-911
Number of pages6
JournalMagnetic resonance in medicine
Volume67
Issue number4
DOIs
StatePublished - Apr 2012

Keywords

  • chemical exchange saturation transfer
  • exchange rate
  • magnetization transfer
  • paramagnetic contrast agent

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Using frequency-labeled exchange transfer to separate out conventional magnetization transfer effects from exchange transfer effects when detecting ParaCEST agents'. Together they form a unique fingerprint.

Cite this