Ultraviolet-radiation-resistant isolates revealed cellulose-degrading species of Cellulosimicrobium cellulans (UVP1) and Bacillus pumilus (UVP4)

Prashant Gabani, Erin Copeland, Anuj K. Chandel, Om V. Singh

Research output: Contribution to journalArticlepeer-review

Abstract

Among extremophiles, microorganisms resistant to ultraviolet radiation (UVR) have been known to produce a variety of metabolites (i.e., extremolytes). We hypothesized that natural microbial flora on elevated land (hills) would reveal a variety of UVR-resistant extremophiles and polyextremophiles with modulated proteins and enzymes that had biotechnological implications. Microorganisms Cellulosimicrobium cellulans UVP1 and Bacillus pumilus UVP4 were isolated and identified using 16S rRNA sequencing, and showed extreme UV resistance (1.03 × 106 and 1.71 × 105 J/m 2, respectively) from elevated land soil samples along with unique patterns of protein expression under UVR and non-UVR. A broad range of cellulolytic activity on carboxymethyl cellulose agar plates in C. cellulans UVP1 and B. pumilus UVP4 was revealed at varying pH, temperature, and inorganic salt concentration. Further, the microbial strain B. pumilus UVP4 showed the basic characteristics of a novel group: polyextremophiles with significance in bioenergy.

Original languageEnglish (US)
Pages (from-to)395-404
Number of pages10
JournalBiotechnology and Applied Biochemistry
Volume59
Issue number5
DOIs
StatePublished - Sep 1 2012

Keywords

  • bioenergy
  • extremophiles
  • microorganisms
  • polyextremophiles
  • therapeutics
  • ultraviolet radiation

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Molecular Medicine
  • Biomedical Engineering
  • Applied Microbiology and Biotechnology
  • Drug Discovery
  • Process Chemistry and Technology

Fingerprint Dive into the research topics of 'Ultraviolet-radiation-resistant isolates revealed cellulose-degrading species of Cellulosimicrobium cellulans (UVP1) and Bacillus pumilus (UVP4)'. Together they form a unique fingerprint.

Cite this