Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi

M. D. McKee, A. Nanci, S. R. Khan

Research output: Contribution to journalArticle

Abstract

The organic matrix of renal calculi has long been considered to influence the crystal growth that occurs in these pathological mineral deposits. Recent advances in characterizing individual organic moieties from mineralized tissues in general and the combined use of antibodies raised against these molecules with different immunocytochemical approaches have allowed their precise distribution to be visualized in a variety of normal and pathological mineralized tissues. The present ultrastructural study reports on the epithelial expression and extracellular localization of several noncollagenous proteins in rat and human kidney stones using high-resolution colloidal-gold immunocytochemistry. To this end, we have examined in an ethylene glycol-induced calcium oxalate model of urolithiasis in the rat, and in human kidney stones, the distribution of certain noncollagenous and plasma proteins known to accumulate in bone and other mineralized tissues that include osteopontin, osteocalcin, bone sialoprotein, albumin, and α2HS- glycoprotein. Of these proteins, osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein) were prominent constituents of the calcium oxalate-associated crystal 'ghosts' found in the nuclei, lamellae, and striations of the organic matrix of lumenal renal calculi in the rat and of small crystal ghosts found within epithelial cells. Immunocytochemical labeling for both proteins of the content of secretory granules in tubular epithelial cells from treated rats, together with labeling of a similarly textured organic material in the tubular lumen, provides evidence for cosecretion of osteopontin and osteocalcin by epithelial cells, their transit through the urinary filtrate, and ultimately their incorporation into growing renal calculi. In normal rat kidney, osteopontin was localized to the Golgi apparatus of thin loop of Henle cells. In human calcium oxalate monohydrate stones, osteopontin was similarly detected in the lamellae and striations of the organic matrix. Based on these data, it is proposed that during urolithiasis, secretion of osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein), and the subsequent incorporation of these proteins into kidney stone matrix, may influence the nucleation, growth processes, aggregation, and/or tubular adhesion of renal calculi in mammalian kidneys.

Original languageEnglish (US)
Pages (from-to)1913-1929
Number of pages17
JournalJournal of Bone and Mineral Research
Volume10
Issue number12
StatePublished - 1995
Externally publishedYes

Fingerprint

Osteopontin
Kidney Calculi
Osteocalcin
Calcium Oxalate
Proteins
Urolithiasis
Epithelial Cells
Integrin-Binding Sialoprotein
Loop of Henle
Kidney
Gold Colloid
Ethylene Glycol
Secretory Vesicles
Golgi Apparatus
Crystallization
Minerals
Blood Proteins
Albumins
Glycoproteins
Immunohistochemistry

ASJC Scopus subject areas

  • Surgery

Cite this

Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. / McKee, M. D.; Nanci, A.; Khan, S. R.

In: Journal of Bone and Mineral Research, Vol. 10, No. 12, 1995, p. 1913-1929.

Research output: Contribution to journalArticle

@article{167a699deaa74973a94e678e211e82e4,
title = "Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi",
abstract = "The organic matrix of renal calculi has long been considered to influence the crystal growth that occurs in these pathological mineral deposits. Recent advances in characterizing individual organic moieties from mineralized tissues in general and the combined use of antibodies raised against these molecules with different immunocytochemical approaches have allowed their precise distribution to be visualized in a variety of normal and pathological mineralized tissues. The present ultrastructural study reports on the epithelial expression and extracellular localization of several noncollagenous proteins in rat and human kidney stones using high-resolution colloidal-gold immunocytochemistry. To this end, we have examined in an ethylene glycol-induced calcium oxalate model of urolithiasis in the rat, and in human kidney stones, the distribution of certain noncollagenous and plasma proteins known to accumulate in bone and other mineralized tissues that include osteopontin, osteocalcin, bone sialoprotein, albumin, and α2HS- glycoprotein. Of these proteins, osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein) were prominent constituents of the calcium oxalate-associated crystal 'ghosts' found in the nuclei, lamellae, and striations of the organic matrix of lumenal renal calculi in the rat and of small crystal ghosts found within epithelial cells. Immunocytochemical labeling for both proteins of the content of secretory granules in tubular epithelial cells from treated rats, together with labeling of a similarly textured organic material in the tubular lumen, provides evidence for cosecretion of osteopontin and osteocalcin by epithelial cells, their transit through the urinary filtrate, and ultimately their incorporation into growing renal calculi. In normal rat kidney, osteopontin was localized to the Golgi apparatus of thin loop of Henle cells. In human calcium oxalate monohydrate stones, osteopontin was similarly detected in the lamellae and striations of the organic matrix. Based on these data, it is proposed that during urolithiasis, secretion of osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein), and the subsequent incorporation of these proteins into kidney stone matrix, may influence the nucleation, growth processes, aggregation, and/or tubular adhesion of renal calculi in mammalian kidneys.",
author = "McKee, {M. D.} and A. Nanci and Khan, {S. R.}",
year = "1995",
language = "English (US)",
volume = "10",
pages = "1913--1929",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "12",

}

TY - JOUR

T1 - Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi

AU - McKee, M. D.

AU - Nanci, A.

AU - Khan, S. R.

PY - 1995

Y1 - 1995

N2 - The organic matrix of renal calculi has long been considered to influence the crystal growth that occurs in these pathological mineral deposits. Recent advances in characterizing individual organic moieties from mineralized tissues in general and the combined use of antibodies raised against these molecules with different immunocytochemical approaches have allowed their precise distribution to be visualized in a variety of normal and pathological mineralized tissues. The present ultrastructural study reports on the epithelial expression and extracellular localization of several noncollagenous proteins in rat and human kidney stones using high-resolution colloidal-gold immunocytochemistry. To this end, we have examined in an ethylene glycol-induced calcium oxalate model of urolithiasis in the rat, and in human kidney stones, the distribution of certain noncollagenous and plasma proteins known to accumulate in bone and other mineralized tissues that include osteopontin, osteocalcin, bone sialoprotein, albumin, and α2HS- glycoprotein. Of these proteins, osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein) were prominent constituents of the calcium oxalate-associated crystal 'ghosts' found in the nuclei, lamellae, and striations of the organic matrix of lumenal renal calculi in the rat and of small crystal ghosts found within epithelial cells. Immunocytochemical labeling for both proteins of the content of secretory granules in tubular epithelial cells from treated rats, together with labeling of a similarly textured organic material in the tubular lumen, provides evidence for cosecretion of osteopontin and osteocalcin by epithelial cells, their transit through the urinary filtrate, and ultimately their incorporation into growing renal calculi. In normal rat kidney, osteopontin was localized to the Golgi apparatus of thin loop of Henle cells. In human calcium oxalate monohydrate stones, osteopontin was similarly detected in the lamellae and striations of the organic matrix. Based on these data, it is proposed that during urolithiasis, secretion of osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein), and the subsequent incorporation of these proteins into kidney stone matrix, may influence the nucleation, growth processes, aggregation, and/or tubular adhesion of renal calculi in mammalian kidneys.

AB - The organic matrix of renal calculi has long been considered to influence the crystal growth that occurs in these pathological mineral deposits. Recent advances in characterizing individual organic moieties from mineralized tissues in general and the combined use of antibodies raised against these molecules with different immunocytochemical approaches have allowed their precise distribution to be visualized in a variety of normal and pathological mineralized tissues. The present ultrastructural study reports on the epithelial expression and extracellular localization of several noncollagenous proteins in rat and human kidney stones using high-resolution colloidal-gold immunocytochemistry. To this end, we have examined in an ethylene glycol-induced calcium oxalate model of urolithiasis in the rat, and in human kidney stones, the distribution of certain noncollagenous and plasma proteins known to accumulate in bone and other mineralized tissues that include osteopontin, osteocalcin, bone sialoprotein, albumin, and α2HS- glycoprotein. Of these proteins, osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein) were prominent constituents of the calcium oxalate-associated crystal 'ghosts' found in the nuclei, lamellae, and striations of the organic matrix of lumenal renal calculi in the rat and of small crystal ghosts found within epithelial cells. Immunocytochemical labeling for both proteins of the content of secretory granules in tubular epithelial cells from treated rats, together with labeling of a similarly textured organic material in the tubular lumen, provides evidence for cosecretion of osteopontin and osteocalcin by epithelial cells, their transit through the urinary filtrate, and ultimately their incorporation into growing renal calculi. In normal rat kidney, osteopontin was localized to the Golgi apparatus of thin loop of Henle cells. In human calcium oxalate monohydrate stones, osteopontin was similarly detected in the lamellae and striations of the organic matrix. Based on these data, it is proposed that during urolithiasis, secretion of osteopontin (uropontin) and osteocalcin (or osteocalcin-related gene/protein), and the subsequent incorporation of these proteins into kidney stone matrix, may influence the nucleation, growth processes, aggregation, and/or tubular adhesion of renal calculi in mammalian kidneys.

UR - http://www.scopus.com/inward/record.url?scp=0028820604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028820604&partnerID=8YFLogxK

M3 - Article

C2 - 8619372

AN - SCOPUS:0028820604

VL - 10

SP - 1913

EP - 1929

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 12

ER -