Turns in Peptides and Proteins

George D. Rose, Lila M. Glerasch, John A. Smith

Research output: Contribution to journalArticlepeer-review

1702 Scopus citations


Turns are a fundamental class of polypeptide structure and are defined as sites where the peptide chain reverses its overall direction. In the past 20 years, the peptide field has witnessed major development, stimulated by the discovery of a host of bioactive peptides. Turn structures have been proposed and implicated in the bioactivity of several of these naturally occurring peptides. In addition, many structural details of turns have been derived from conformational studies of model peptides. During this same period, more than 100 complete protein structures have been elucidated in single-crystal X-ray studies. These examples document the rich diversity of structural patterns in the chain folds of native proteins. Turns are intrinsically polar structures with backbone groups that pack together closely and side chains that project outward. Such an array of atoms may constitute a site for molecular recognition, and indeed, the literature abounds with suggestions that turns serve as loci for receptor binding, antibody recognition, and post-translational modification. In peptides, turns are the conformations of choice for simultaneously optimizing both backbone–chain compactness (intramolecular nonbonded contacts) and side-chain clustering (to facilitate intermolecular recognition). Presence of turns in bioactive conformations may in fact also reflect the lack of alternative conformational possibilities. The aim of this chapter is to examine structural and functional roles of turns in peptides and proteins.

Original languageEnglish (US)
Pages (from-to)1-109
Number of pages109
JournalAdvances in Protein Chemistry
Issue numberC
StatePublished - Jan 1 1985
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Turns in Peptides and Proteins'. Together they form a unique fingerprint.

Cite this