Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis

Anju Singh, Christine Happel, Soumen K. Manna, George Acquaah-Mensah, Julian Carrerero, Sarvesh Kumar, Poonam Nasipuri, Kristopher W. Krausz, Nobunao Wakabayashi, Ruby Dewi, Laszlo G. Boros, Frank J. Gonzalez, Edward Gabrielson, Kwok K. Wong, Geoffrey Girnun, Shyam Biswal

Research output: Contribution to journalArticle

Abstract

The mechanisms by which deregulated nuclear factor erythroid-2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and 13C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the expression of metabolic genes and dramatically impaired NADPH production, ribose synthesis, and in vivo tumor growth in mice. Loss of NRF2 decreased the expression of the redox-sensitive histone deacetylase, HDAC4, resulting in increased expression of miR-1 and miR-206, and not only inhibiting PPP expression and activity but functioning as a regulatory feedback loop that repressed HDAC4 expression. In primary tumor samples, the expression of miR-1 and miR-206 was inversely correlated with PPP gene expression, and increased expression of NRF2-dependent genes was associated with poor prognosis. Our results demonstrate that microRNA-dependent (miRNA-dependent) regulation of the PPP via NRF2 and HDAC4 represents a novel link between miRNA regulation, glucose metabolism, and ROS homeostasis in cancer cells.

Original languageEnglish (US)
Pages (from-to)2921-2934
Number of pages14
JournalJournal of Clinical Investigation
Volume123
Issue number7
DOIs
StatePublished - Jul 1 2013

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis'. Together they form a unique fingerprint.

  • Cite this

    Singh, A., Happel, C., Manna, S. K., Acquaah-Mensah, G., Carrerero, J., Kumar, S., Nasipuri, P., Krausz, K. W., Wakabayashi, N., Dewi, R., Boros, L. G., Gonzalez, F. J., Gabrielson, E., Wong, K. K., Girnun, G., & Biswal, S. (2013). Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. Journal of Clinical Investigation, 123(7), 2921-2934. https://doi.org/10.1172/JCI66353