Towards control of dexterous hand manipulations using a silicon Pattern Generator

Alexander Russell, Francesco Tenore, Girish Singhal, Nitish Thakor, Ralph Etienne-Cummings

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work demonstrates how an in silico Pattern Generator (PG) can be used as a low power control system for rhythmic hand movements in an upper-limb prosthesis. Neural spike patterns, which encode rotation of a cylindrical object, were implemented in a custom Very Large Scale Integration chip. PG control was tested by using the decoded control signals to actuate the fingers of a virtual prosthetic arm. This system provides a framework for prototyping and controlling dexterous hand manipulation tasks in a compact and efficient solution.

Original languageEnglish (US)
Title of host publicationProceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
PublisherIEEE Computer Society
Pages3455-3458
Number of pages4
ISBN (Print)9781424418152
DOIs
StatePublished - 2008
Event30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - Vancouver, BC, Canada
Duration: Aug 20 2008Aug 25 2008

Publication series

NameProceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology"

Other

Other30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
Country/TerritoryCanada
CityVancouver, BC
Period8/20/088/25/08

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Towards control of dexterous hand manipulations using a silicon Pattern Generator'. Together they form a unique fingerprint.

Cite this