Towards Bimanual Vein Cannulation: Preliminary Study of a Bimanual Robotic System with a Dual Force Constraint Controller

Changyan He, Ali Ebrahimi, Emily Yang, Muller Urias, Yang Yang, Peter Gehlbach, Iulian Iordachita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Retinal vein cannulation is a promising approach for treating retinal vein occlusion that involves injecting medicine into the occluded vessel to dissolve the clot. The approach remains largely unexploited clinically due to surgeon limitations in detecting interaction forces between surgical tools and retinal tissue. In this paper, a dual force constraint controller for robot-assisted retinal surgery was presented to keep the tool-to-vessel forces and tool-to-sclera forces below prescribed thresholds. A cannulation tool and forceps with dual force-sensing capability were developed and used to measure force information fed into the robot controller, which was implemented on existing Steady Hand Eye Robot platforms. The robotic system facilitates retinal vein cannulation by allowing a user to grasp the target vessel with the forceps and then enter the vessel with the cannula. The system was evaluated on an eye phantom. The results showed that, while the eyeball was subjected to rotational disturbances, the proposed controller actuates the robotic manipulators to maintain the average tool-to-vessel force at 10.9 mN and 13.1 mN and the average tool-to-sclera force at 38.1 mN and 41.2 mN for the cannula and the forcpes, respectively. Such small tool-to-tissue forces are acceptable to avoid retinal tissue injury. Additionally, two clinicians participated in a preliminary user study of the bimanual cannulation demonstrating that the operation time and tool-to-tissue forces are significantly decreased when using the bimanual robotic system as compared to freehand performance.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4441-4447
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: May 31 2020Aug 31 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period5/31/208/31/20

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Towards Bimanual Vein Cannulation: Preliminary Study of a Bimanual Robotic System with a Dual Force Constraint Controller'. Together they form a unique fingerprint.

Cite this