Towards a brain-computer interface for dexterous control of a multi-fingered prosthetic hand

Soumyadipta Acharya, Vikram Aggarwal, Francesco Tenore, Hyun Chool Shin, Ralph Etienne-Cummings, Marc H. Schieber, Nitish V. Thakor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent advances in Brain-Computer Interfaces (BCI) have enabled direct neural control of robotic and prosthetic devices. However, it remains unknown whether cortical signals can be decoded in real-time to replicate dexterous movements of individual fingers and the wrist. In this study, single unit activity from 115 task-related neurons in the primary motor cortex (M1) of a trained rhesus monkey were recorded, as it performed individuated movements of the fingers and wrist of the right hand. Virtual multi-unit ensembles, or voxels, were created by randomly selecting contiguous subpopulations of these neurons. Non-linear hierarchical filters using Artificial Neural Networks (ANNs) were designed to asynchronously decode the activity from multiple virtual ensembles, in real-time. The decoded output was then used to actuate individual fingers of a robotic hand. An average real-time decoding accuracy of greater than 95 % was achieved with all neurons from randomly placed voxels containing 48 neurons, and up to 80% with as few as 25 neurons. These results suggest that dexterous control of individual digits and wrist of a prosthetic hand can be achieved by real-time decoding of neuronal ensembles from the M1 hand area in primates.

Original languageEnglish (US)
Title of host publicationProceedings of the 3rd International IEEE EMBS Conference on Neural Engineering
Pages200-203
Number of pages4
DOIs
StatePublished - Sep 25 2007
Event3rd International IEEE EMBS Conference on Neural Engineering - Kohala Coast, HI, United States
Duration: May 2 2007May 5 2007

Publication series

NameProceedings of the 3rd International IEEE EMBS Conference on Neural Engineering

Other

Other3rd International IEEE EMBS Conference on Neural Engineering
CountryUnited States
CityKohala Coast, HI
Period5/2/075/5/07

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Neuroscience (miscellaneous)

Fingerprint Dive into the research topics of 'Towards a brain-computer interface for dexterous control of a multi-fingered prosthetic hand'. Together they form a unique fingerprint.

Cite this