Topology-preserving geometric deformable model on adaptive quadtree grid

Ying Bai, Xiao Han, Jerry L. Prince

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Topology-preserving geometric deformable models (TGDMs) are used to segment objects that have a known topology. Their accuracy is inherently limited, however, by the resolution of the underlying computational grid. Although this can be overcome by using fine-resolution grids, both the computational cost and the size of the resulting contour increase dramatically. In order to maintain computational efficiency and to keep the contour size manageable, we have developed a new framework, termed QTGDMs, for topology-preserving geometric deformable models on balanced quadtree grids (BQGs). In order to do this, definitions and concepts from digital topology on regular grids were extended to BQGs so that characterization of simple points could be made. Other issues critical to the implementation of geometric deformable models are also addressed and a strategy for adapting a BQG during contour evolution is presented. We demonstrate the performance of the QTGDM method using both mathematical phantoms and real medical images.

Original languageEnglish (US)
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - Oct 12 2007
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: Jun 17 2007Jun 22 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
CountryUnited States
CityMinneapolis, MN
Period6/17/076/22/07

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Topology-preserving geometric deformable model on adaptive quadtree grid'. Together they form a unique fingerprint.

Cite this