Three-dimensional structure of a bacterial oxalate transporter

Teruhisa Hirai, Jurgen A.W. Heymann, Dan Shi, Rafiquel Sarker, Peter C. Maloney, Sriram Subramaniam

Research output: Contribution to journalArticlepeer-review

Abstract

The major facilitator superfamily (MFS) represents one of the largest classes of evolutionarily related membrane transporter proteins. Here we present the three-dimensional structure at 6.5 Å resolution of a bacterial member of this superfamily, OxlT. The structure, derived from an electron crystallographic analysis of two-dimensional crystals, reveals that the 12 helices in the OxlT molecule are arranged around a central cavity, which is widest at the center of the membrane. The helices divide naturally into three groups: a peripheral set comprising helices 3, 6, 9 and 12; a second set comprising helices 2, 5, 8 and 11 that faces the central substrate transport pathway across most of the length of the membrane; and a third set comprising helices 1, 4, 7 and 10 that participate in the pathway either on the cytoplasmic side (4 and 10) or on the periplasmic side (1 and 7). Overall, the architecture of the protein is remarkably symmetric, providing a compelling molecular explanation for the ability of such transporters to carry out bi-directional substrate transport.

Original languageEnglish (US)
Pages (from-to)597-600
Number of pages4
JournalNature structural biology
Volume9
Issue number8
DOIs
StatePublished - 2002

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Genetics

Fingerprint Dive into the research topics of 'Three-dimensional structure of a bacterial oxalate transporter'. Together they form a unique fingerprint.

Cite this