The role of DNA bending in type IIA topoisomerase function

Imsang Lee, Ken C. Dong, James M. Berger

Research output: Contribution to journalArticlepeer-review

Abstract

Type IIA topoisomerases control DNA supercoiling and separate newly replicated chromosomes using a complex DNA strand cleavage and passage mechanism. Structural and biochemical studies have shown that these enzymes sharply bend DNA by as much as 150°; an invariant isoleucine, which has been seen structurally to intercalate between two base pairs outside of the DNA cleavage site, has been suggested to promote deformation. To test this assumption, we examined the role of isoleucine on DNA binding, bending and catalytic activity for a bacterial type IIA topoisomerase, Escherichia coli topoisomerase IV (topo IV), using a combination of site-directed mutagenesis and biochemical assays. Our data show that alteration of the isoleucine (Ile 172) did not affect the basal ATPase activity of topo IV or its affinity for DNA. However, the amino acid was important for DNA bending, DNA cleavage and supercoil relaxation. Moreover, an ability to bend DNA correlated with efficacy with which nucleic acid substrates stimulate ATP hydrolysis. These data show that DNA binding and bending by topo IV can be uncoupled, and indicate that the stabilization of a highly curved DNA geometry is critical to the type IIA topoisomerase catalytic cycle.

Original languageEnglish (US)
Pages (from-to)5444-5456
Number of pages13
JournalNucleic acids research
Volume41
Issue number10
DOIs
StatePublished - May 2013
Externally publishedYes

ASJC Scopus subject areas

  • Genetics

Fingerprint Dive into the research topics of 'The role of DNA bending in type IIA topoisomerase function'. Together they form a unique fingerprint.

Cite this