The right ventricle in scleroderma (2013 Grover conference series)

Research output: Contribution to journalReview article

Abstract

Pulmonary arterial hypertension (PAH) results from severe remodeling of the distal lung vessels leading irremediably to death through right ventricular (RV) failure. PAH (Group 1 of the World Health Organization classification of pulmonary hypertension) can be idiopathic (IPAH) or associated with other disorders, such as connective tissue diseases. Prominent among the latter is systemic sclerosis (SSc), a heterogeneous disorder characterized by endothelium dysfunction, dysregulation of fibroblasts resulting in excessive collagen production, and immune abnormalities. For as-yet-unknown reasons, SSc-associated PAH (SSc-PAH) carries a significantly worse prognosis compared with any other form of PAH in Group 1, including IPAH. We have previously shown that patients with SSc-PAH have a median survival of only 3 years, compared with 8 years for IPAH, despite modern PAH therapy. Because death is principally due to RV failure, we speculated that RV adaptation to PAH differed between the two entities due to disparate pulmonary artery loading, perhaps from vessel stiffening, or intrinsic RV myocardial disease that might limit function and adaptation to high afterload. In SSc, RV function may also be impaired by inflammatory processes, excess fibrosis of the myocardium, or altered angiogenesis, which may all contribute to impaired contractile reserve exacerbating cardiopulmonary impedance mismatch. This is now suggested by recent findings from our group that demonstrate that, although pulmonary vascular load may be similar between patients with IPAH and those with SSc-PAH, the latter display reduced myocardial contractility as assessed by pressure-volume loop measurements. This review focuses on fundamental hemodynamic, structural, and functional differences in RV from patients with SSc-PAH compared with IPAH, which may account for survival discrepancies between the two populations. Possible underlying basic mechanisms are discussed.

Original languageEnglish (US)
Pages (from-to)3-4
Number of pages2
JournalPulmonary Circulation
Volume5
Issue number1
DOIs
StatePublished - Mar 1 2015

Fingerprint

Pulmonary Hypertension
Heart Ventricles
Systemic Scleroderma
Right Ventricular Function
Lung
Connective Tissue Diseases
Survival
Patient Rights
Electric Impedance
Cardiomyopathies
Pulmonary Artery
Endothelium
Blood Vessels
Myocardium
Fibrosis
Collagen
Fibroblasts
Hemodynamics
Pressure

Keywords

  • Pulmonary arterial hypertension
  • Right ventricle
  • Right ventricle-pulmonary vascular coupling

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine

Cite this

The right ventricle in scleroderma (2013 Grover conference series). / Hassoun, Paul M.

In: Pulmonary Circulation, Vol. 5, No. 1, 01.03.2015, p. 3-4.

Research output: Contribution to journalReview article

@article{f4cd618dd84d4dd4a6d3a06e6bf822da,
title = "The right ventricle in scleroderma (2013 Grover conference series)",
abstract = "Pulmonary arterial hypertension (PAH) results from severe remodeling of the distal lung vessels leading irremediably to death through right ventricular (RV) failure. PAH (Group 1 of the World Health Organization classification of pulmonary hypertension) can be idiopathic (IPAH) or associated with other disorders, such as connective tissue diseases. Prominent among the latter is systemic sclerosis (SSc), a heterogeneous disorder characterized by endothelium dysfunction, dysregulation of fibroblasts resulting in excessive collagen production, and immune abnormalities. For as-yet-unknown reasons, SSc-associated PAH (SSc-PAH) carries a significantly worse prognosis compared with any other form of PAH in Group 1, including IPAH. We have previously shown that patients with SSc-PAH have a median survival of only 3 years, compared with 8 years for IPAH, despite modern PAH therapy. Because death is principally due to RV failure, we speculated that RV adaptation to PAH differed between the two entities due to disparate pulmonary artery loading, perhaps from vessel stiffening, or intrinsic RV myocardial disease that might limit function and adaptation to high afterload. In SSc, RV function may also be impaired by inflammatory processes, excess fibrosis of the myocardium, or altered angiogenesis, which may all contribute to impaired contractile reserve exacerbating cardiopulmonary impedance mismatch. This is now suggested by recent findings from our group that demonstrate that, although pulmonary vascular load may be similar between patients with IPAH and those with SSc-PAH, the latter display reduced myocardial contractility as assessed by pressure-volume loop measurements. This review focuses on fundamental hemodynamic, structural, and functional differences in RV from patients with SSc-PAH compared with IPAH, which may account for survival discrepancies between the two populations. Possible underlying basic mechanisms are discussed.",
keywords = "Pulmonary arterial hypertension, Right ventricle, Right ventricle-pulmonary vascular coupling",
author = "Hassoun, {Paul M}",
year = "2015",
month = "3",
day = "1",
doi = "10.1086/679607",
language = "English (US)",
volume = "5",
pages = "3--4",
journal = "Pulmonary Circulation",
issn = "2045-8932",
publisher = "University of Chicago Press",
number = "1",

}

TY - JOUR

T1 - The right ventricle in scleroderma (2013 Grover conference series)

AU - Hassoun, Paul M

PY - 2015/3/1

Y1 - 2015/3/1

N2 - Pulmonary arterial hypertension (PAH) results from severe remodeling of the distal lung vessels leading irremediably to death through right ventricular (RV) failure. PAH (Group 1 of the World Health Organization classification of pulmonary hypertension) can be idiopathic (IPAH) or associated with other disorders, such as connective tissue diseases. Prominent among the latter is systemic sclerosis (SSc), a heterogeneous disorder characterized by endothelium dysfunction, dysregulation of fibroblasts resulting in excessive collagen production, and immune abnormalities. For as-yet-unknown reasons, SSc-associated PAH (SSc-PAH) carries a significantly worse prognosis compared with any other form of PAH in Group 1, including IPAH. We have previously shown that patients with SSc-PAH have a median survival of only 3 years, compared with 8 years for IPAH, despite modern PAH therapy. Because death is principally due to RV failure, we speculated that RV adaptation to PAH differed between the two entities due to disparate pulmonary artery loading, perhaps from vessel stiffening, or intrinsic RV myocardial disease that might limit function and adaptation to high afterload. In SSc, RV function may also be impaired by inflammatory processes, excess fibrosis of the myocardium, or altered angiogenesis, which may all contribute to impaired contractile reserve exacerbating cardiopulmonary impedance mismatch. This is now suggested by recent findings from our group that demonstrate that, although pulmonary vascular load may be similar between patients with IPAH and those with SSc-PAH, the latter display reduced myocardial contractility as assessed by pressure-volume loop measurements. This review focuses on fundamental hemodynamic, structural, and functional differences in RV from patients with SSc-PAH compared with IPAH, which may account for survival discrepancies between the two populations. Possible underlying basic mechanisms are discussed.

AB - Pulmonary arterial hypertension (PAH) results from severe remodeling of the distal lung vessels leading irremediably to death through right ventricular (RV) failure. PAH (Group 1 of the World Health Organization classification of pulmonary hypertension) can be idiopathic (IPAH) or associated with other disorders, such as connective tissue diseases. Prominent among the latter is systemic sclerosis (SSc), a heterogeneous disorder characterized by endothelium dysfunction, dysregulation of fibroblasts resulting in excessive collagen production, and immune abnormalities. For as-yet-unknown reasons, SSc-associated PAH (SSc-PAH) carries a significantly worse prognosis compared with any other form of PAH in Group 1, including IPAH. We have previously shown that patients with SSc-PAH have a median survival of only 3 years, compared with 8 years for IPAH, despite modern PAH therapy. Because death is principally due to RV failure, we speculated that RV adaptation to PAH differed between the two entities due to disparate pulmonary artery loading, perhaps from vessel stiffening, or intrinsic RV myocardial disease that might limit function and adaptation to high afterload. In SSc, RV function may also be impaired by inflammatory processes, excess fibrosis of the myocardium, or altered angiogenesis, which may all contribute to impaired contractile reserve exacerbating cardiopulmonary impedance mismatch. This is now suggested by recent findings from our group that demonstrate that, although pulmonary vascular load may be similar between patients with IPAH and those with SSc-PAH, the latter display reduced myocardial contractility as assessed by pressure-volume loop measurements. This review focuses on fundamental hemodynamic, structural, and functional differences in RV from patients with SSc-PAH compared with IPAH, which may account for survival discrepancies between the two populations. Possible underlying basic mechanisms are discussed.

KW - Pulmonary arterial hypertension

KW - Right ventricle

KW - Right ventricle-pulmonary vascular coupling

UR - http://www.scopus.com/inward/record.url?scp=85026338169&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85026338169&partnerID=8YFLogxK

U2 - 10.1086/679607

DO - 10.1086/679607

M3 - Review article

C2 - 25992267

AN - SCOPUS:85026338169

VL - 5

SP - 3

EP - 4

JO - Pulmonary Circulation

JF - Pulmonary Circulation

SN - 2045-8932

IS - 1

ER -