The rice blast pathosystem as a case study for the development of new tools and raw materials for genome analysis of fungal plant pathogens

Thomas K. Mitchell, Michael R. Thon, Jun Seop Jeong, Doug Brown, Jixin Deng, Ralph A. Dean

Research output: Contribution to journalReview articlepeer-review

13 Scopus citations

Abstract

Fungi have an astounding and diverse impact on this planet. While they are agents of human diseases and the cause of allergic reactions, factories for the conversion of carbon in environmental and industrially adapted systems, and potential biological weapons, their importance as plant pathogens is unparalleled. In plants alone, fungi cause tens of thousands of different diseases and are responsible for massive losses of food, fiber and forestry at an estimated annual cost of hundreds of billions of dollars. These losses are not only realized in the incomes of individual farmers and state economies, but contribute significantly to world hunger problems and issues relating to safeguarding a global food supply. Our collective understanding of how fungi, particularly plant pathogens, grow, reproduce, identify a host and cause disease is still at a formative stage. There is an equal lack of detailed knowledge about how a plant recognizes that it is being attacked and then mounts an adequate defense response. The advent of genomic technologies has given researchers an unprecedented opportunity to address these mysteries in a powerful and more holistic manner. Where the genetic revolution of only a few years ago allowed for the characterization of single genes, today's genomic technologies are facilitating the evaluation of the entire complement of genes in an organism and the discovery of the suites of genes that act during any one time or particular condition. This review will describe the recent development of tools for whole or partial genome analysis and multigenome comparisons. Th discussion focuses on the rice blast pathosystem as a case study.

Original languageEnglish (US)
Pages (from-to)53-61
Number of pages9
JournalNew Phytologist
Volume159
Issue number1
DOIs
StatePublished - Jul 1 2003
Externally publishedYes

Keywords

  • BAC
  • Fungi
  • Genomic tools
  • Magnaporthe grisea
  • Physical map
  • Rice blast
  • Synteny
  • Whole genome comparison

ASJC Scopus subject areas

  • Physiology
  • Plant Science

Fingerprint

Dive into the research topics of 'The rice blast pathosystem as a case study for the development of new tools and raw materials for genome analysis of fungal plant pathogens'. Together they form a unique fingerprint.

Cite this