The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia

Steven L. Clark, Emily F. Hamilton, Thomas J. Garite, Audra Timmins, Philip A. Warrick, Samuel Smith

Research output: Contribution to journalArticle

Abstract

Background Despite intensive efforts directed at initial training in fetal heart rate interpretation, continuing medical education, board certification/recertification, team training, and the development of specific protocols for the management of abnormal fetal heart rate patterns, the goals of consistently preventing hypoxia-induced fetal metabolic acidemia and neurologic injury remain elusive. Objective The purpose of this study was to validate a recently published algorithm for the management of category II fetal heart rate tracings, to examine reasons for the birth of infants with significant metabolic acidemia despite the use of electronic fetal heart rate monitoring, and to examine critically the limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Study Design The potential performance of electronic fetal heart rate monitoring under ideal circumstances was evaluated in an outcomes-blinded examination fetal heart rate tracing of infants with metabolic acidemia at birth (base deficit, >12) and matched control infants (base deficit, <8) under the following conditions: (1) expert primary interpretation, (2) use of a published algorithm that was developed and endorsed by a large group of national experts, (3) assumption of a 30-minute period of evaluation for noncritical category II fetal heart rate tracings, followed by delivery within 30 minutes, (4) evaluation without the need to provide patient care simultaneously, and (5) comparison of results under these circumstances with those achieved in actual clinical practice. Results During the study period, 120 infants were identified with an arterial cord blood base deficit of >12 mM/L. Matched control infants were not demographically different from subjects. In actual practice, operative intervention on the basis of an abnormal fetal heart rate tracings occurred in 36 of 120 fetuses (30.0%) with metabolic acidemia. Based on expert, algorithm-assisted reviews, 55 of 120 patients with acidemia (45.8%) were judged to need operative intervention for abnormal fetal heart rate tracings. This difference was significant (P=.016). In infants who were born with a base deficit of >12 mM/L in which blinded, algorithm-assisted expert review indicated the need for operative delivery, the decision for delivery would have been made an average of 131 minutes before the actual delivery. The rate of expert intervention for fetal heart rate concerns in the nonacidemic control group (22/120; 18.3%) was similar to the actual intervention rate (23/120; 19.2%; P=1.0) Expert review did not mandate earlier delivery in 65 of 120 patients with metabolic acidemia. The primary features of these 65 cases included the occurrence of sentinel events with prolonged deceleration just before delivery, the rapid deterioration of nonemergent category II fetal heart rate tracings before realistic time frames for recognition and intervention, and the failure of recognized fetal heart rate patterns such as variability to identify metabolic acidemia. Conclusions Expert, algorithm-assisted fetal heart rate interpretation has the potential to improve standard clinical performance by facilitating significantly earlier recognition of some tracings that are associated with metabolic acidemia without increasing the rate of operative intervention. However, this improvement is modest. Of infants who are born with metabolic acidemia, only approximately one-half potentially could be identified and have delivery expedited even under ideal circumstances, which are probably not realistic in current US practice. This represents the limits of electronic fetal heart rate monitoring performance. Additional technologies will be necessary if the goal of the prevention of neonatal metabolic acidemia is to be realized.

Original languageEnglish (US)
Pages (from-to)163.e1-163.e6
JournalAmerican journal of obstetrics and gynecology
Volume216
Issue number2
DOIs
StatePublished - Feb 1 2017
Externally publishedYes

Fingerprint

Fetal Heart Rate
Parturition
Fetal Hypoxia
Nervous System Trauma
Continuing Medical Education
Deceleration
Certification

Keywords

  • category II
  • fetal heart rate monitoring
  • metabolic acidemia

ASJC Scopus subject areas

  • Obstetrics and Gynecology

Cite this

The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. / Clark, Steven L.; Hamilton, Emily F.; Garite, Thomas J.; Timmins, Audra; Warrick, Philip A.; Smith, Samuel.

In: American journal of obstetrics and gynecology, Vol. 216, No. 2, 01.02.2017, p. 163.e1-163.e6.

Research output: Contribution to journalArticle

Clark, Steven L. ; Hamilton, Emily F. ; Garite, Thomas J. ; Timmins, Audra ; Warrick, Philip A. ; Smith, Samuel. / The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. In: American journal of obstetrics and gynecology. 2017 ; Vol. 216, No. 2. pp. 163.e1-163.e6.
@article{f35cee6333114075a42f6c20eb42173b,
title = "The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia",
abstract = "Background Despite intensive efforts directed at initial training in fetal heart rate interpretation, continuing medical education, board certification/recertification, team training, and the development of specific protocols for the management of abnormal fetal heart rate patterns, the goals of consistently preventing hypoxia-induced fetal metabolic acidemia and neurologic injury remain elusive. Objective The purpose of this study was to validate a recently published algorithm for the management of category II fetal heart rate tracings, to examine reasons for the birth of infants with significant metabolic acidemia despite the use of electronic fetal heart rate monitoring, and to examine critically the limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Study Design The potential performance of electronic fetal heart rate monitoring under ideal circumstances was evaluated in an outcomes-blinded examination fetal heart rate tracing of infants with metabolic acidemia at birth (base deficit, >12) and matched control infants (base deficit, <8) under the following conditions: (1) expert primary interpretation, (2) use of a published algorithm that was developed and endorsed by a large group of national experts, (3) assumption of a 30-minute period of evaluation for noncritical category II fetal heart rate tracings, followed by delivery within 30 minutes, (4) evaluation without the need to provide patient care simultaneously, and (5) comparison of results under these circumstances with those achieved in actual clinical practice. Results During the study period, 120 infants were identified with an arterial cord blood base deficit of >12 mM/L. Matched control infants were not demographically different from subjects. In actual practice, operative intervention on the basis of an abnormal fetal heart rate tracings occurred in 36 of 120 fetuses (30.0{\%}) with metabolic acidemia. Based on expert, algorithm-assisted reviews, 55 of 120 patients with acidemia (45.8{\%}) were judged to need operative intervention for abnormal fetal heart rate tracings. This difference was significant (P=.016). In infants who were born with a base deficit of >12 mM/L in which blinded, algorithm-assisted expert review indicated the need for operative delivery, the decision for delivery would have been made an average of 131 minutes before the actual delivery. The rate of expert intervention for fetal heart rate concerns in the nonacidemic control group (22/120; 18.3{\%}) was similar to the actual intervention rate (23/120; 19.2{\%}; P=1.0) Expert review did not mandate earlier delivery in 65 of 120 patients with metabolic acidemia. The primary features of these 65 cases included the occurrence of sentinel events with prolonged deceleration just before delivery, the rapid deterioration of nonemergent category II fetal heart rate tracings before realistic time frames for recognition and intervention, and the failure of recognized fetal heart rate patterns such as variability to identify metabolic acidemia. Conclusions Expert, algorithm-assisted fetal heart rate interpretation has the potential to improve standard clinical performance by facilitating significantly earlier recognition of some tracings that are associated with metabolic acidemia without increasing the rate of operative intervention. However, this improvement is modest. Of infants who are born with metabolic acidemia, only approximately one-half potentially could be identified and have delivery expedited even under ideal circumstances, which are probably not realistic in current US practice. This represents the limits of electronic fetal heart rate monitoring performance. Additional technologies will be necessary if the goal of the prevention of neonatal metabolic acidemia is to be realized.",
keywords = "category II, fetal heart rate monitoring, metabolic acidemia",
author = "Clark, {Steven L.} and Hamilton, {Emily F.} and Garite, {Thomas J.} and Audra Timmins and Warrick, {Philip A.} and Samuel Smith",
year = "2017",
month = "2",
day = "1",
doi = "10.1016/j.ajog.2016.10.009",
language = "English (US)",
volume = "216",
pages = "163.e1--163.e6",
journal = "American Journal of Obstetrics and Gynecology",
issn = "0002-9378",
publisher = "Mosby Inc.",
number = "2",

}

TY - JOUR

T1 - The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia

AU - Clark, Steven L.

AU - Hamilton, Emily F.

AU - Garite, Thomas J.

AU - Timmins, Audra

AU - Warrick, Philip A.

AU - Smith, Samuel

PY - 2017/2/1

Y1 - 2017/2/1

N2 - Background Despite intensive efforts directed at initial training in fetal heart rate interpretation, continuing medical education, board certification/recertification, team training, and the development of specific protocols for the management of abnormal fetal heart rate patterns, the goals of consistently preventing hypoxia-induced fetal metabolic acidemia and neurologic injury remain elusive. Objective The purpose of this study was to validate a recently published algorithm for the management of category II fetal heart rate tracings, to examine reasons for the birth of infants with significant metabolic acidemia despite the use of electronic fetal heart rate monitoring, and to examine critically the limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Study Design The potential performance of electronic fetal heart rate monitoring under ideal circumstances was evaluated in an outcomes-blinded examination fetal heart rate tracing of infants with metabolic acidemia at birth (base deficit, >12) and matched control infants (base deficit, <8) under the following conditions: (1) expert primary interpretation, (2) use of a published algorithm that was developed and endorsed by a large group of national experts, (3) assumption of a 30-minute period of evaluation for noncritical category II fetal heart rate tracings, followed by delivery within 30 minutes, (4) evaluation without the need to provide patient care simultaneously, and (5) comparison of results under these circumstances with those achieved in actual clinical practice. Results During the study period, 120 infants were identified with an arterial cord blood base deficit of >12 mM/L. Matched control infants were not demographically different from subjects. In actual practice, operative intervention on the basis of an abnormal fetal heart rate tracings occurred in 36 of 120 fetuses (30.0%) with metabolic acidemia. Based on expert, algorithm-assisted reviews, 55 of 120 patients with acidemia (45.8%) were judged to need operative intervention for abnormal fetal heart rate tracings. This difference was significant (P=.016). In infants who were born with a base deficit of >12 mM/L in which blinded, algorithm-assisted expert review indicated the need for operative delivery, the decision for delivery would have been made an average of 131 minutes before the actual delivery. The rate of expert intervention for fetal heart rate concerns in the nonacidemic control group (22/120; 18.3%) was similar to the actual intervention rate (23/120; 19.2%; P=1.0) Expert review did not mandate earlier delivery in 65 of 120 patients with metabolic acidemia. The primary features of these 65 cases included the occurrence of sentinel events with prolonged deceleration just before delivery, the rapid deterioration of nonemergent category II fetal heart rate tracings before realistic time frames for recognition and intervention, and the failure of recognized fetal heart rate patterns such as variability to identify metabolic acidemia. Conclusions Expert, algorithm-assisted fetal heart rate interpretation has the potential to improve standard clinical performance by facilitating significantly earlier recognition of some tracings that are associated with metabolic acidemia without increasing the rate of operative intervention. However, this improvement is modest. Of infants who are born with metabolic acidemia, only approximately one-half potentially could be identified and have delivery expedited even under ideal circumstances, which are probably not realistic in current US practice. This represents the limits of electronic fetal heart rate monitoring performance. Additional technologies will be necessary if the goal of the prevention of neonatal metabolic acidemia is to be realized.

AB - Background Despite intensive efforts directed at initial training in fetal heart rate interpretation, continuing medical education, board certification/recertification, team training, and the development of specific protocols for the management of abnormal fetal heart rate patterns, the goals of consistently preventing hypoxia-induced fetal metabolic acidemia and neurologic injury remain elusive. Objective The purpose of this study was to validate a recently published algorithm for the management of category II fetal heart rate tracings, to examine reasons for the birth of infants with significant metabolic acidemia despite the use of electronic fetal heart rate monitoring, and to examine critically the limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Study Design The potential performance of electronic fetal heart rate monitoring under ideal circumstances was evaluated in an outcomes-blinded examination fetal heart rate tracing of infants with metabolic acidemia at birth (base deficit, >12) and matched control infants (base deficit, <8) under the following conditions: (1) expert primary interpretation, (2) use of a published algorithm that was developed and endorsed by a large group of national experts, (3) assumption of a 30-minute period of evaluation for noncritical category II fetal heart rate tracings, followed by delivery within 30 minutes, (4) evaluation without the need to provide patient care simultaneously, and (5) comparison of results under these circumstances with those achieved in actual clinical practice. Results During the study period, 120 infants were identified with an arterial cord blood base deficit of >12 mM/L. Matched control infants were not demographically different from subjects. In actual practice, operative intervention on the basis of an abnormal fetal heart rate tracings occurred in 36 of 120 fetuses (30.0%) with metabolic acidemia. Based on expert, algorithm-assisted reviews, 55 of 120 patients with acidemia (45.8%) were judged to need operative intervention for abnormal fetal heart rate tracings. This difference was significant (P=.016). In infants who were born with a base deficit of >12 mM/L in which blinded, algorithm-assisted expert review indicated the need for operative delivery, the decision for delivery would have been made an average of 131 minutes before the actual delivery. The rate of expert intervention for fetal heart rate concerns in the nonacidemic control group (22/120; 18.3%) was similar to the actual intervention rate (23/120; 19.2%; P=1.0) Expert review did not mandate earlier delivery in 65 of 120 patients with metabolic acidemia. The primary features of these 65 cases included the occurrence of sentinel events with prolonged deceleration just before delivery, the rapid deterioration of nonemergent category II fetal heart rate tracings before realistic time frames for recognition and intervention, and the failure of recognized fetal heart rate patterns such as variability to identify metabolic acidemia. Conclusions Expert, algorithm-assisted fetal heart rate interpretation has the potential to improve standard clinical performance by facilitating significantly earlier recognition of some tracings that are associated with metabolic acidemia without increasing the rate of operative intervention. However, this improvement is modest. Of infants who are born with metabolic acidemia, only approximately one-half potentially could be identified and have delivery expedited even under ideal circumstances, which are probably not realistic in current US practice. This represents the limits of electronic fetal heart rate monitoring performance. Additional technologies will be necessary if the goal of the prevention of neonatal metabolic acidemia is to be realized.

KW - category II

KW - fetal heart rate monitoring

KW - metabolic acidemia

UR - http://www.scopus.com/inward/record.url?scp=85010910505&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85010910505&partnerID=8YFLogxK

U2 - 10.1016/j.ajog.2016.10.009

DO - 10.1016/j.ajog.2016.10.009

M3 - Article

C2 - 27751795

AN - SCOPUS:85010910505

VL - 216

SP - 163.e1-163.e6

JO - American Journal of Obstetrics and Gynecology

JF - American Journal of Obstetrics and Gynecology

SN - 0002-9378

IS - 2

ER -