The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment

Tomohide Satoh, Christopher A. Ross, Antonello Villa, Surachai Supattapone, Tullio Pozzan, Solomon H. Snyder, Jacopo Meldolesi

Research output: Contribution to journalArticlepeer-review

224 Scopus citations

Abstract

The Ca2+ mobilization effect of inositol 1,4,5-trisphosphate, the second messenger generated via receptor-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate, is mediated by binding to intracellular receptors, which are expressed in high concentration in cerebellar Purkinje cells. Partially conflicting previous reports localized the receptor to various subcellular structures: elements of ER, both rough and smooth-surfaced, the nuclear envelope, and even the plasma membrane. We have now reinvestigated the problem quantitatively by using cryosections of rat cerebellar tissue immunolabeled with polyclonal monospecific antibodies against the inositol 1,4,5-trisphosphate receptor. By immunofluorescence the receptor was detected only in Purkinje cells, whereas the other cells of the cerebellar cortex remained negative. In immunogold-decorated ultrathin cryosections of the Purkinje cell body, the receptor was concentrated in cisternal stacks (piles of up to 12 parallel cisternae separated by regularly spaced bridges, located both in the deep cytoplasm and beneath the plasma membrane; average density, >5 particles/μm of membrane profile); in cisternal singlets and doublets adjacent to the plasma membrane (average density, ≈2.5 particles/μm); and in other apparently smooth-surfaced vesicular and tubular profiles. Additional smooth-surfaced elements were unlabeled. Perinuclear and rough-surfaced ER cisternae were labeled much less by themselves (≈0.5 particles/μm, two- to threefold the background), but were often in direct membrane continuity with heavily labeled, smooth-surfaced tubules and cisternal stacks. Finally, mitochondria, Golgi cisternae, multivesicular bodies, and the plasma membrane were unlabeled. In dendrites, approximately half of the nonmitochondrial, membrane-bound structures (cisternae, tubules, and vesicles), as well as small cisternal stacks, were labeled. Dendritic spines always contained immunolabeled cisternae and vesicles. The dendritic plasma membrane, of both shaft and spines, was consistently unlabeled. These results identify a large, smoothsurfaced ER subcompartment that appears equipped to play a key role in the control of Ca2+ homeostasis: in particular, in the generation of [Ca2+]i transients triggered by activation of specific receptors, such as the quisqualate-preferring trans(±)-1-amino-1,3-cyclopentamedicarboxylic acid glutamatergic receptors, which are largely expressed by Purkinje cells.

Original languageEnglish (US)
Pages (from-to)615-624
Number of pages10
JournalJournal of Cell Biology
Volume111
Issue number2
DOIs
StatePublished - Aug 1990

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment'. Together they form a unique fingerprint.

Cite this