TY - JOUR
T1 - The importance of transparency and reproducibility in artificial intelligence research
AU - Massive Analysis Quality Control (MAQC) Society Board of Directors
AU - Haibe-Kains, Benjamin
AU - Adam, George Alexandru
AU - Hosny, Ahmed
AU - Khodakarami, Farnoosh
AU - Waldron, Levi
AU - Wang, Bo
AU - McIntosh, Chris
AU - Kundaje, Anshul
AU - Greene, Casey S.
AU - Hoffman, Michael M.
AU - Leek, Jeffrey T.
AU - Huber, Wolfgang
AU - Brazma, Alvis
AU - Pineau, Joelle
AU - Tibshirani, Robert
AU - Hastie, Trevor
AU - Ioannidis, John P.A.
AU - Quackenbush, John
AU - Aerts, Hugo J.W.L.
AU - Shraddha, Thakkar
AU - Kusko, Rebecca
AU - Sansone, Susanna Assunta
AU - Tong, Weida
AU - Wolfinger, Russ D.
AU - Mason, Christopher
AU - Jones, Wendell
AU - Dopazo, Joaquin
AU - Furlanello, Cesare
N1 - Publisher Copyright:
Copyright © 2020, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/2/28
Y1 - 2020/2/28
N2 - In their study, McKinney et al. showed the high potential of artificial intelligence for breast cancer screening. However, the lack of detailed methods and computer code undermines its scientific value. We identify obstacles hindering transparent and reproducible AI research as faced by McKinney et al and provide solutions with implications for the broader field.
AB - In their study, McKinney et al. showed the high potential of artificial intelligence for breast cancer screening. However, the lack of detailed methods and computer code undermines its scientific value. We identify obstacles hindering transparent and reproducible AI research as faced by McKinney et al and provide solutions with implications for the broader field.
UR - http://www.scopus.com/inward/record.url?scp=85095628689&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095628689&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85095628689
JO - Advances in Water Resources
JF - Advances in Water Resources
SN - 0309-1708
ER -