The impact of the new biology on radiation risks in space

Research output: Contribution to journalArticle

Abstract

Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.

Original languageEnglish (US)
Pages (from-to)94-102
Number of pages9
JournalHealth Physics
Volume85
Issue number1
DOIs
StatePublished - Jul 1 2003

Fingerprint

Radiobiology
biology
hazards
Radiation
Hazards
radiation
hazard
space habitats
Dietary supplements
examination
Research
United States National Aeronautics and Space Administration
Astronauts
space programs
immune systems
Weightlessness
dosage
central nervous system
astronauts
Immune system

Keywords

  • Health effects
  • NCRP
  • Radiation, cosmic
  • Risk analysis

ASJC Scopus subject areas

  • Environmental Science (miscellaneous)
  • Health, Toxicology and Mutagenesis
  • Toxicology
  • Physics and Astronomy (miscellaneous)
  • Public Health, Environmental and Occupational Health
  • Environmental Chemistry
  • Environmental Science(all)

Cite this

The impact of the new biology on radiation risks in space. / Dicello, John F.

In: Health Physics, Vol. 85, No. 1, 01.07.2003, p. 94-102.

Research output: Contribution to journalArticle

@article{bd414495426247f78f315f128f3efec9,
title = "The impact of the new biology on radiation risks in space",
abstract = "Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.",
keywords = "Health effects, NCRP, Radiation, cosmic, Risk analysis",
author = "Dicello, {John F}",
year = "2003",
month = "7",
day = "1",
doi = "10.1097/00004032-200307000-00017",
language = "English (US)",
volume = "85",
pages = "94--102",
journal = "Health Physics",
issn = "0017-9078",
publisher = "Lippincott Williams and Wilkins",
number = "1",

}

TY - JOUR

T1 - The impact of the new biology on radiation risks in space

AU - Dicello, John F

PY - 2003/7/1

Y1 - 2003/7/1

N2 - Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.

AB - Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.

KW - Health effects

KW - NCRP

KW - Radiation, cosmic

KW - Risk analysis

UR - http://www.scopus.com/inward/record.url?scp=0038119756&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038119756&partnerID=8YFLogxK

U2 - 10.1097/00004032-200307000-00017

DO - 10.1097/00004032-200307000-00017

M3 - Article

C2 - 12861962

AN - SCOPUS:0038119756

VL - 85

SP - 94

EP - 102

JO - Health Physics

JF - Health Physics

SN - 0017-9078

IS - 1

ER -