The genetics of allergen-induced airway hyperresponsiveness in mice

Marsha Wills-Karp, Susan L. Ewart

Research output: Contribution to journalArticle

Abstract

Airway hyperresponsiveness (AHR) is a fundamental aspect of asthma that has been shown to be influenced by both environmental and genetic factors. Antigen sensitization and challenge of the A/J inbred mouse strain induced AHR, eosinophilic airway inflammation, and lung goblet cell hyperplasia. We discuss the evidence that supports the role of T helper cells and their subsets in determining the airway inflammatory and contractile responses to antigen in a mouse model. Airway hyperresponsiveness and pulmonary eosinophilic inflammation induced by antigen challenge are associated with a Th2 pattern of cytokine expression in the murine lung. CD4+ T cells mediate the airway reaction to antigen, as depletion of CD4+ T cells attenuates the response. The presence of interleukin (IL)-4 induces the Th2 type of immune response, and this cytokine is required for mice to manifest AHR and inflammation to antigen. The Th1 type of immune response is stimulated by IL- 12. Antigen-mediated AHR and inflammation are inhibited by IL-12 administration. Airway hyperresponsiveness in the noninflammatory state (without antigen treatment) is inherited in A/J and C3H/HeJ inbred mouse strains. One quantitative trait locus for AHR in progeny derived from these strains is located on murine chromosome 6. We propose that antigen-induced AHR and inflammation also have heritable components. Based on the available immunological data, genes that influence the balance between Th1 and Th2 cells are logical candidate genes for antigen-induced AHR and inflammation. Knowledge of the genes that determine this phenotype will help us understand the mechanisms of human asthma.

Original languageEnglish (US)
JournalAmerican Journal of Respiratory and Critical Care Medicine
Volume156
Issue number4 II SUPPL.
StatePublished - 1997

Fingerprint

Allergens
Antigens
Inflammation
Inbred Strains Mice
Interleukin-12
Pneumonia
Asthma
Cytokines
Genes
T-Lymphocytes
Th2 Cells
Th1 Cells
Chromosomes, Human, Pair 6
Goblet Cells
Quantitative Trait Loci
Helper-Inducer T-Lymphocytes
Interleukin-4
Hyperplasia
Phenotype
Lung

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine

Cite this

The genetics of allergen-induced airway hyperresponsiveness in mice. / Wills-Karp, Marsha; Ewart, Susan L.

In: American Journal of Respiratory and Critical Care Medicine, Vol. 156, No. 4 II SUPPL., 1997.

Research output: Contribution to journalArticle

@article{36633ba1894049e69363cec9e03908ef,
title = "The genetics of allergen-induced airway hyperresponsiveness in mice",
abstract = "Airway hyperresponsiveness (AHR) is a fundamental aspect of asthma that has been shown to be influenced by both environmental and genetic factors. Antigen sensitization and challenge of the A/J inbred mouse strain induced AHR, eosinophilic airway inflammation, and lung goblet cell hyperplasia. We discuss the evidence that supports the role of T helper cells and their subsets in determining the airway inflammatory and contractile responses to antigen in a mouse model. Airway hyperresponsiveness and pulmonary eosinophilic inflammation induced by antigen challenge are associated with a Th2 pattern of cytokine expression in the murine lung. CD4+ T cells mediate the airway reaction to antigen, as depletion of CD4+ T cells attenuates the response. The presence of interleukin (IL)-4 induces the Th2 type of immune response, and this cytokine is required for mice to manifest AHR and inflammation to antigen. The Th1 type of immune response is stimulated by IL- 12. Antigen-mediated AHR and inflammation are inhibited by IL-12 administration. Airway hyperresponsiveness in the noninflammatory state (without antigen treatment) is inherited in A/J and C3H/HeJ inbred mouse strains. One quantitative trait locus for AHR in progeny derived from these strains is located on murine chromosome 6. We propose that antigen-induced AHR and inflammation also have heritable components. Based on the available immunological data, genes that influence the balance between Th1 and Th2 cells are logical candidate genes for antigen-induced AHR and inflammation. Knowledge of the genes that determine this phenotype will help us understand the mechanisms of human asthma.",
author = "Marsha Wills-Karp and Ewart, {Susan L.}",
year = "1997",
language = "English (US)",
volume = "156",
journal = "American Journal of Respiratory and Critical Care Medicine",
issn = "1073-449X",
publisher = "American Thoracic Society",
number = "4 II SUPPL.",

}

TY - JOUR

T1 - The genetics of allergen-induced airway hyperresponsiveness in mice

AU - Wills-Karp, Marsha

AU - Ewart, Susan L.

PY - 1997

Y1 - 1997

N2 - Airway hyperresponsiveness (AHR) is a fundamental aspect of asthma that has been shown to be influenced by both environmental and genetic factors. Antigen sensitization and challenge of the A/J inbred mouse strain induced AHR, eosinophilic airway inflammation, and lung goblet cell hyperplasia. We discuss the evidence that supports the role of T helper cells and their subsets in determining the airway inflammatory and contractile responses to antigen in a mouse model. Airway hyperresponsiveness and pulmonary eosinophilic inflammation induced by antigen challenge are associated with a Th2 pattern of cytokine expression in the murine lung. CD4+ T cells mediate the airway reaction to antigen, as depletion of CD4+ T cells attenuates the response. The presence of interleukin (IL)-4 induces the Th2 type of immune response, and this cytokine is required for mice to manifest AHR and inflammation to antigen. The Th1 type of immune response is stimulated by IL- 12. Antigen-mediated AHR and inflammation are inhibited by IL-12 administration. Airway hyperresponsiveness in the noninflammatory state (without antigen treatment) is inherited in A/J and C3H/HeJ inbred mouse strains. One quantitative trait locus for AHR in progeny derived from these strains is located on murine chromosome 6. We propose that antigen-induced AHR and inflammation also have heritable components. Based on the available immunological data, genes that influence the balance between Th1 and Th2 cells are logical candidate genes for antigen-induced AHR and inflammation. Knowledge of the genes that determine this phenotype will help us understand the mechanisms of human asthma.

AB - Airway hyperresponsiveness (AHR) is a fundamental aspect of asthma that has been shown to be influenced by both environmental and genetic factors. Antigen sensitization and challenge of the A/J inbred mouse strain induced AHR, eosinophilic airway inflammation, and lung goblet cell hyperplasia. We discuss the evidence that supports the role of T helper cells and their subsets in determining the airway inflammatory and contractile responses to antigen in a mouse model. Airway hyperresponsiveness and pulmonary eosinophilic inflammation induced by antigen challenge are associated with a Th2 pattern of cytokine expression in the murine lung. CD4+ T cells mediate the airway reaction to antigen, as depletion of CD4+ T cells attenuates the response. The presence of interleukin (IL)-4 induces the Th2 type of immune response, and this cytokine is required for mice to manifest AHR and inflammation to antigen. The Th1 type of immune response is stimulated by IL- 12. Antigen-mediated AHR and inflammation are inhibited by IL-12 administration. Airway hyperresponsiveness in the noninflammatory state (without antigen treatment) is inherited in A/J and C3H/HeJ inbred mouse strains. One quantitative trait locus for AHR in progeny derived from these strains is located on murine chromosome 6. We propose that antigen-induced AHR and inflammation also have heritable components. Based on the available immunological data, genes that influence the balance between Th1 and Th2 cells are logical candidate genes for antigen-induced AHR and inflammation. Knowledge of the genes that determine this phenotype will help us understand the mechanisms of human asthma.

UR - http://www.scopus.com/inward/record.url?scp=0030854183&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030854183&partnerID=8YFLogxK

M3 - Article

VL - 156

JO - American Journal of Respiratory and Critical Care Medicine

JF - American Journal of Respiratory and Critical Care Medicine

SN - 1073-449X

IS - 4 II SUPPL.

ER -