The effect of round window reinforcement on human hearing

Xiying Guan, Y. Song Cheng, Deepa Galaiya, Hideko H. Nakajima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The compliant round window (RW) allows volume velocity to flow within the incompressible fluid of the cochlea as the oval window vibrates during sound stimulation. Recently, surgically stiffened RW is emerging as a treatment for various conditions such as superior canal dehiscence and hyperacusis. However, we lack the basic understanding of how reinforcing the RW affects sound transmission in the ear. The aim of this study is to clarify the effect of RW reinforcement on hearing. To study the effect of RW reinforcement with tissue and adhesive, we measured intracochlear pressures in scala vestibuli (Psv) and scala tympani (Pst) at the cochlear base together with stapes velocity in response to sound at the ear canal. The cochlear input drive (Pdiff = Psv-Pst, an estimate of hearing) was determined before and after RW reinforcement in a fresh human cadaveric ear. Results show that increasing the RW stiffness by reinforcement can affect the cochlear input drive in unexpected ways. Below 200 Hz, RW reinforcement resulted in reduced stapes motion, however an increase in cochlear drive, consistent with increase in hearing. At 200-1000 Hz, the hearing and stapes motion both were slightly decreased. Reinforcing the RW had no effect above 1 kHz. To understand the cochlear mechanical effects of RW reinforcement, we used a lumped-element model that simulated our findings.

Original languageEnglish (US)
Title of host publicationTo the Ear and Back Again - Advances in Auditory Biophysics
Subtitle of host publicationProceedings of the 13th Mechanics of Hearing Workshop
EditorsChristopher Bergevin, Sunil Puria
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416703
DOIs
StatePublished - May 31 2018
Externally publishedYes
Event13th Mechanics of Hearing Workshop: To the Ear and Back Again - Advances in Auditory Biophysics, MoH 2017 - St. Catharines, Canada
Duration: Jun 19 2017Jun 24 2017

Publication series

NameAIP Conference Proceedings
Volume1965
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other13th Mechanics of Hearing Workshop: To the Ear and Back Again - Advances in Auditory Biophysics, MoH 2017
CountryCanada
CitySt. Catharines
Period6/19/176/24/17

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'The effect of round window reinforcement on human hearing'. Together they form a unique fingerprint.

Cite this