The effect of intrauterine inflammation on mTOR signaling in mouse fetal brain

Jie Dong, Jun Lei, Nada A. Elsayed, Ji Yeon Lee, Na Shin, Quan Na, Anna Chudnovets, Bei Jia, Xiaohong Wang, Irina Burd

Research output: Contribution to journalArticlepeer-review

Abstract

Fetuses exposed to an inflammatory environment are predisposed to long-term adverse neurological outcomes. However, the mechanism by which intrauterine inflammation (IUI) is responsible for abnormal fetal brain development is not fully understood. The mechanistic target of rapamycin (mTOR) signaling pathway is closely associated with fetal brain development. We hypothesized that mTOR signaling might be involved in fetal brain injury and malformation when fetuses are exposed to the IUI environment. A well-established IUI model was utilized by intrauterine injection of lipopolysaccharide (LPS) to explore the effect of IUI on mTOR signaling in mouse fetal brains. We found that microglia activation in LPS fetal brains was increased, as demonstrated by elevated Iba-1 protein level and immunofluorescence density. LPS fetal brains also showed reduced neuronal cell counts, decreased cell proliferation demonstrated by low Ki67-positive density, and elevated neuron apoptosis evidenced by high expression of cleaved Caspase 3. Furthermore, we found that mTOR signaling in LPS fetal brains was elevated at 2 hr after LPS treatment, declined at 6 hr and showed overall inhibition at 24 hr. In summary, our study revealed that LPS-induced IUI leads to increased activation of microglia cells, neuronal damage, and dynamic alterations in mTOR signaling in the mouse fetal brain. Our findings indicate that abnormal changes in mTOR signaling may underlie the development of future neurological complications in offspring exposed to prenatal IUI.

Original languageEnglish (US)
Pages (from-to)149-159
Number of pages11
JournalDevelopmental Neurobiology
Volume80
Issue number5-6
DOIs
StatePublished - May 1 2020

Keywords

  • fetal neurodevelopment
  • intrauterine inflammation
  • mTOR signaling

ASJC Scopus subject areas

  • Developmental Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'The effect of intrauterine inflammation on mTOR signaling in mouse fetal brain'. Together they form a unique fingerprint.

Cite this