The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology

E. M. Rouiller, R. Cronin-Schreiber, D. M. Fekete, David Kay Ryugo

Research output: Contribution to journalArticle

Abstract

The axons of physiologically characterized spiral ganglion neurons (type I) were stained throughout their arborizations in the cochlear nucleus by the intracellular injection of horseradish peroxidase (HRP). The tips of the axonal branches were marked by distinct swellings, ranging in size and shape from small boutons to large perisomatic ramifications. Electron microscopic analysis of such swellings revealed ultrastructural features characteristic of primary auditory synapses, consistent with the hypothesis that terminal swellings identifiable in the light microscope represent presynaptic endings. On the basis of light microscopic differences in size, these endings were organized into three categories. Endings of relatively small size (terminal boutons, free endings, boutons with filopodia, string endings, and small complex endings) composed 94% of all terminal endings. Within this category of small endings, there were predictable variations in relative size and regional distribution that related to the spontaneous discharge rate (SR) of the fiber. The endings of low and medium SR fibers (SR≤18 spikes/second) were smaller on average than those of high SR fibers (SR>18 spikes/second). Furthermore, there were more endings arising from the ascending branch than from the descending branch when comparing fibers of the low and medium SR group with those of the high SR group. There were not, however, obvious morphological features of this ending category that correlated with the characteristic frequency (CF, the pure tone frequency to which the neuron is most sensitive). A second category contained medium-sized complex endings, most of which formed axosomatic contacts. This category composed 4% of the population and was found in close proximity to the perikarya of globular, octopus, and spherical cells. The endings from low and medium SR fibers were smaller on average than those from high SR fibers. These endings did not vary in their parent branch distribution with respect to fiber SR, nor did they exhibit morphological features that correlated with fiber CF. The third category contained large complex endings (endbulbs of Held) and composed 2% of the ending population. Within the anteroventral cochlear nucleus, these large, complex endings made axosomatic contact with spherical cells in the anterior division and with globular cells in the posterior division. There were no systematic variations in ending size or branch distribution that correlated with fiber SR. There was, however, a relationship between ending size and fiber CF such that fibers having CFs below 4 kHz gave rise to the largest endbulbs.

Original languageEnglish (US)
Pages (from-to)261-278
Number of pages18
JournalJournal of Comparative Neurology
Volume249
Issue number2
StatePublished - 1986
Externally publishedYes

Fingerprint

Cochlear Nerve
Nerve Fibers
Cochlear Nucleus
Cats
Spiral Ganglion
Octopodiformes
Neurons
Light
Pseudopodia
Horseradish Peroxidase
Synapses
Population
Axons
Electrons
Injections

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

The central projections of intracellularly labeled auditory nerve fibers in cats : An analysis of terminal morphology. / Rouiller, E. M.; Cronin-Schreiber, R.; Fekete, D. M.; Ryugo, David Kay.

In: Journal of Comparative Neurology, Vol. 249, No. 2, 1986, p. 261-278.

Research output: Contribution to journalArticle

@article{a3bf752952e742a29e26ab945bd0d68f,
title = "The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology",
abstract = "The axons of physiologically characterized spiral ganglion neurons (type I) were stained throughout their arborizations in the cochlear nucleus by the intracellular injection of horseradish peroxidase (HRP). The tips of the axonal branches were marked by distinct swellings, ranging in size and shape from small boutons to large perisomatic ramifications. Electron microscopic analysis of such swellings revealed ultrastructural features characteristic of primary auditory synapses, consistent with the hypothesis that terminal swellings identifiable in the light microscope represent presynaptic endings. On the basis of light microscopic differences in size, these endings were organized into three categories. Endings of relatively small size (terminal boutons, free endings, boutons with filopodia, string endings, and small complex endings) composed 94{\%} of all terminal endings. Within this category of small endings, there were predictable variations in relative size and regional distribution that related to the spontaneous discharge rate (SR) of the fiber. The endings of low and medium SR fibers (SR≤18 spikes/second) were smaller on average than those of high SR fibers (SR>18 spikes/second). Furthermore, there were more endings arising from the ascending branch than from the descending branch when comparing fibers of the low and medium SR group with those of the high SR group. There were not, however, obvious morphological features of this ending category that correlated with the characteristic frequency (CF, the pure tone frequency to which the neuron is most sensitive). A second category contained medium-sized complex endings, most of which formed axosomatic contacts. This category composed 4{\%} of the population and was found in close proximity to the perikarya of globular, octopus, and spherical cells. The endings from low and medium SR fibers were smaller on average than those from high SR fibers. These endings did not vary in their parent branch distribution with respect to fiber SR, nor did they exhibit morphological features that correlated with fiber CF. The third category contained large complex endings (endbulbs of Held) and composed 2{\%} of the ending population. Within the anteroventral cochlear nucleus, these large, complex endings made axosomatic contact with spherical cells in the anterior division and with globular cells in the posterior division. There were no systematic variations in ending size or branch distribution that correlated with fiber SR. There was, however, a relationship between ending size and fiber CF such that fibers having CFs below 4 kHz gave rise to the largest endbulbs.",
author = "Rouiller, {E. M.} and R. Cronin-Schreiber and Fekete, {D. M.} and Ryugo, {David Kay}",
year = "1986",
language = "English (US)",
volume = "249",
pages = "261--278",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "2",

}

TY - JOUR

T1 - The central projections of intracellularly labeled auditory nerve fibers in cats

T2 - An analysis of terminal morphology

AU - Rouiller, E. M.

AU - Cronin-Schreiber, R.

AU - Fekete, D. M.

AU - Ryugo, David Kay

PY - 1986

Y1 - 1986

N2 - The axons of physiologically characterized spiral ganglion neurons (type I) were stained throughout their arborizations in the cochlear nucleus by the intracellular injection of horseradish peroxidase (HRP). The tips of the axonal branches were marked by distinct swellings, ranging in size and shape from small boutons to large perisomatic ramifications. Electron microscopic analysis of such swellings revealed ultrastructural features characteristic of primary auditory synapses, consistent with the hypothesis that terminal swellings identifiable in the light microscope represent presynaptic endings. On the basis of light microscopic differences in size, these endings were organized into three categories. Endings of relatively small size (terminal boutons, free endings, boutons with filopodia, string endings, and small complex endings) composed 94% of all terminal endings. Within this category of small endings, there were predictable variations in relative size and regional distribution that related to the spontaneous discharge rate (SR) of the fiber. The endings of low and medium SR fibers (SR≤18 spikes/second) were smaller on average than those of high SR fibers (SR>18 spikes/second). Furthermore, there were more endings arising from the ascending branch than from the descending branch when comparing fibers of the low and medium SR group with those of the high SR group. There were not, however, obvious morphological features of this ending category that correlated with the characteristic frequency (CF, the pure tone frequency to which the neuron is most sensitive). A second category contained medium-sized complex endings, most of which formed axosomatic contacts. This category composed 4% of the population and was found in close proximity to the perikarya of globular, octopus, and spherical cells. The endings from low and medium SR fibers were smaller on average than those from high SR fibers. These endings did not vary in their parent branch distribution with respect to fiber SR, nor did they exhibit morphological features that correlated with fiber CF. The third category contained large complex endings (endbulbs of Held) and composed 2% of the ending population. Within the anteroventral cochlear nucleus, these large, complex endings made axosomatic contact with spherical cells in the anterior division and with globular cells in the posterior division. There were no systematic variations in ending size or branch distribution that correlated with fiber SR. There was, however, a relationship between ending size and fiber CF such that fibers having CFs below 4 kHz gave rise to the largest endbulbs.

AB - The axons of physiologically characterized spiral ganglion neurons (type I) were stained throughout their arborizations in the cochlear nucleus by the intracellular injection of horseradish peroxidase (HRP). The tips of the axonal branches were marked by distinct swellings, ranging in size and shape from small boutons to large perisomatic ramifications. Electron microscopic analysis of such swellings revealed ultrastructural features characteristic of primary auditory synapses, consistent with the hypothesis that terminal swellings identifiable in the light microscope represent presynaptic endings. On the basis of light microscopic differences in size, these endings were organized into three categories. Endings of relatively small size (terminal boutons, free endings, boutons with filopodia, string endings, and small complex endings) composed 94% of all terminal endings. Within this category of small endings, there were predictable variations in relative size and regional distribution that related to the spontaneous discharge rate (SR) of the fiber. The endings of low and medium SR fibers (SR≤18 spikes/second) were smaller on average than those of high SR fibers (SR>18 spikes/second). Furthermore, there were more endings arising from the ascending branch than from the descending branch when comparing fibers of the low and medium SR group with those of the high SR group. There were not, however, obvious morphological features of this ending category that correlated with the characteristic frequency (CF, the pure tone frequency to which the neuron is most sensitive). A second category contained medium-sized complex endings, most of which formed axosomatic contacts. This category composed 4% of the population and was found in close proximity to the perikarya of globular, octopus, and spherical cells. The endings from low and medium SR fibers were smaller on average than those from high SR fibers. These endings did not vary in their parent branch distribution with respect to fiber SR, nor did they exhibit morphological features that correlated with fiber CF. The third category contained large complex endings (endbulbs of Held) and composed 2% of the ending population. Within the anteroventral cochlear nucleus, these large, complex endings made axosomatic contact with spherical cells in the anterior division and with globular cells in the posterior division. There were no systematic variations in ending size or branch distribution that correlated with fiber SR. There was, however, a relationship between ending size and fiber CF such that fibers having CFs below 4 kHz gave rise to the largest endbulbs.

UR - http://www.scopus.com/inward/record.url?scp=0022921552&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022921552&partnerID=8YFLogxK

M3 - Article

C2 - 3734159

AN - SCOPUS:0022921552

VL - 249

SP - 261

EP - 278

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 2

ER -