The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation

Alejandro Crespo, Marcelo A. Martí, Adrian E. Roitberg, L. Mario Amzel, Darío A. Estrin

Research output: Contribution to journalArticle

Abstract

The molecular basis of the hydroxylation reaction of the Cα of a C-terminal glycine catalyzed by peptidylglycine α-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented new insights into the hydrogen abstraction (H-abstraction) mechanism operative in PHM. Our results suggest that O2 binds to CuB to generate CuBII-O2 .- followed by electron transfer (ET) from CuA to form CuBI-O2.-. The computed potential energy profiles for the H-abstraction reaction for CuB II-O2.-, CuBI-O 2., and [CuBII-OOH]+ species indicate that none of these species can be responsible for abstraction. However, the latter species can spontaneously form [CuBO] +2 (which consists of a two-unpaired-electrons [CuBO] + moiety ferromagneticaly coupled with a radical cation located over the three CuB ligands, in the quartet spin ground state) by abstracting a proton from the surrounding solvent. Both this monooxygenated species and the one obtained by reduction with ascorbate, [CuBO] +, were found to be capable of carrying out the H-abstraction; however, whereas the former abstracts the hydrogen atom concertedly with almost no activation energy, the later forms an intermediate that continues the reaction by a rebinding step. We propose that the active species in H-abstraction in PHM is probably [CuBO]+2 because it is formed exothermically and can concertedly abstract the substrate HA atom with the lower overall activation energy. Interestingly, this species resembles the active oxidant in cytochrome P450 enzymes, Compound I, suggesting that both PHM and cytochrome P450 enzymes may carry out substrate hydroxylation by using a similar mechanism.

Original languageEnglish (US)
Pages (from-to)12817-12828
Number of pages12
JournalJournal of the American Chemical Society
Volume128
Issue number39
DOIs
StatePublished - Oct 4 2006

    Fingerprint

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this