The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis

A prospective, randomised laboratory investigation

Nalan Kayhan, Benjamin Funke, Lars Oliver Conzelmann, Harald Winkler, Stefan Hofer, Jochen Steppan, Hubert Bardenheuer, Christian Friedrich Vahl, Markus A. Weigand

Research output: Contribution to journalArticle

Abstract

Introduction: The treatment of septic conditions in critically ill patients is still one of medicine's major challenges. Cyclic nucleotides, adenosine and its receptors play a pivotal role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction. The aim of this study was to verify the hypothesis that adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be beneficial in experimental endotoxicosis/sepsis. Method: We used two established animal models for endotoxicosis and sepsis. Twenty-four male Wistar rats that had been given intravenous endotoxin (Escherichia coli lipopolysaccharide) were treated with either erythro-9-[2-hydroxyl-3-nonyl]-adenine infusion or 0.9% saline during a study length of 120 minutes. Sepsis in 84 female C57BL/6 mice was induced by caecal ligation and puncture. Animals were treated with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed treatment. Results: In endotoxaemic rats, intestinal production of hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to 411.4 +/- 124.6 μmol/l and uric acid formation increased from 1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-nonyl]-adenine, we found no elevation of adenosine metabolites. The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control animals; p = 2.5 × 10-7) reflects a highly permeable small intestine and through the application of erythro-9-[2-hydroxyl-3-nonyl]-adenine, intestinal permeability could be re-established. The lipopolysaccharide animals had decreased L-rhamnose/ 3-O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa damage score of the septic animals was higher compared with control and therapy animals (p <0.05). Septic shock induction by caecal ligation and puncture resulted in a 160-hour survival rate of about 25%. In contrast, direct adenosine deaminase-1 inhibition resulted in a survival rate of about 75% (p = 0.0018). A protective effect was still present when erythro-9-[2-hydroxyl-3-nonyl]-adenine treatment was delayed for four hours (55%, p = 0.029). Conclusions: We present further evidence of the beneficial effects achieved by administering erythro-9-[2-hydroxyl-3-nonyl]-adenine, an adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibitor, in an endotoxicosis and sepsis animal model. This suggests a potential therapeutic option in the treatment of septic conditions.

Original languageEnglish (US)
Article numberR125
JournalCritical Care
Volume12
Issue number5
DOIs
StatePublished - Oct 13 2008
Externally publishedYes

Fingerprint

Adenosine Deaminase Inhibitors
Adenine
Hydroxyl Radical
Permeability
Sepsis
Adenosine Deaminase
Rhamnose
Cyclic GMP
adenine deaminase
Punctures
Ligation
Lipopolysaccharides
Therapeutics
Animal Models
3-O-Methylglucose
Lactulose
Purinergic P1 Receptors
Hypoxanthine
Phosphodiesterase Inhibitors
Cyclic Nucleotides

ASJC Scopus subject areas

  • Critical Care and Intensive Care Medicine
  • Medicine(all)

Cite this

The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis : A prospective, randomised laboratory investigation. / Kayhan, Nalan; Funke, Benjamin; Conzelmann, Lars Oliver; Winkler, Harald; Hofer, Stefan; Steppan, Jochen; Bardenheuer, Hubert; Vahl, Christian Friedrich; Weigand, Markus A.

In: Critical Care, Vol. 12, No. 5, R125, 13.10.2008.

Research output: Contribution to journalArticle

Kayhan, Nalan ; Funke, Benjamin ; Conzelmann, Lars Oliver ; Winkler, Harald ; Hofer, Stefan ; Steppan, Jochen ; Bardenheuer, Hubert ; Vahl, Christian Friedrich ; Weigand, Markus A. / The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis : A prospective, randomised laboratory investigation. In: Critical Care. 2008 ; Vol. 12, No. 5.
@article{e7055a0218be48d09347bb3979fdbf53,
title = "The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis: A prospective, randomised laboratory investigation",
abstract = "Introduction: The treatment of septic conditions in critically ill patients is still one of medicine's major challenges. Cyclic nucleotides, adenosine and its receptors play a pivotal role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction. The aim of this study was to verify the hypothesis that adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be beneficial in experimental endotoxicosis/sepsis. Method: We used two established animal models for endotoxicosis and sepsis. Twenty-four male Wistar rats that had been given intravenous endotoxin (Escherichia coli lipopolysaccharide) were treated with either erythro-9-[2-hydroxyl-3-nonyl]-adenine infusion or 0.9{\%} saline during a study length of 120 minutes. Sepsis in 84 female C57BL/6 mice was induced by caecal ligation and puncture. Animals were treated with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed treatment. Results: In endotoxaemic rats, intestinal production of hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to 411.4 +/- 124.6 μmol/l and uric acid formation increased from 1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-nonyl]-adenine, we found no elevation of adenosine metabolites. The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control animals; p = 2.5 × 10-7) reflects a highly permeable small intestine and through the application of erythro-9-[2-hydroxyl-3-nonyl]-adenine, intestinal permeability could be re-established. The lipopolysaccharide animals had decreased L-rhamnose/ 3-O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa damage score of the septic animals was higher compared with control and therapy animals (p <0.05). Septic shock induction by caecal ligation and puncture resulted in a 160-hour survival rate of about 25{\%}. In contrast, direct adenosine deaminase-1 inhibition resulted in a survival rate of about 75{\%} (p = 0.0018). A protective effect was still present when erythro-9-[2-hydroxyl-3-nonyl]-adenine treatment was delayed for four hours (55{\%}, p = 0.029). Conclusions: We present further evidence of the beneficial effects achieved by administering erythro-9-[2-hydroxyl-3-nonyl]-adenine, an adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibitor, in an endotoxicosis and sepsis animal model. This suggests a potential therapeutic option in the treatment of septic conditions.",
author = "Nalan Kayhan and Benjamin Funke and Conzelmann, {Lars Oliver} and Harald Winkler and Stefan Hofer and Jochen Steppan and Hubert Bardenheuer and Vahl, {Christian Friedrich} and Weigand, {Markus A.}",
year = "2008",
month = "10",
day = "13",
doi = "10.1186/cc7033",
language = "English (US)",
volume = "12",
journal = "Critical Care",
issn = "1364-8535",
publisher = "BioMed Central Ltd.",
number = "5",

}

TY - JOUR

T1 - The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis

T2 - A prospective, randomised laboratory investigation

AU - Kayhan, Nalan

AU - Funke, Benjamin

AU - Conzelmann, Lars Oliver

AU - Winkler, Harald

AU - Hofer, Stefan

AU - Steppan, Jochen

AU - Bardenheuer, Hubert

AU - Vahl, Christian Friedrich

AU - Weigand, Markus A.

PY - 2008/10/13

Y1 - 2008/10/13

N2 - Introduction: The treatment of septic conditions in critically ill patients is still one of medicine's major challenges. Cyclic nucleotides, adenosine and its receptors play a pivotal role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction. The aim of this study was to verify the hypothesis that adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be beneficial in experimental endotoxicosis/sepsis. Method: We used two established animal models for endotoxicosis and sepsis. Twenty-four male Wistar rats that had been given intravenous endotoxin (Escherichia coli lipopolysaccharide) were treated with either erythro-9-[2-hydroxyl-3-nonyl]-adenine infusion or 0.9% saline during a study length of 120 minutes. Sepsis in 84 female C57BL/6 mice was induced by caecal ligation and puncture. Animals were treated with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed treatment. Results: In endotoxaemic rats, intestinal production of hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to 411.4 +/- 124.6 μmol/l and uric acid formation increased from 1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-nonyl]-adenine, we found no elevation of adenosine metabolites. The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control animals; p = 2.5 × 10-7) reflects a highly permeable small intestine and through the application of erythro-9-[2-hydroxyl-3-nonyl]-adenine, intestinal permeability could be re-established. The lipopolysaccharide animals had decreased L-rhamnose/ 3-O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa damage score of the septic animals was higher compared with control and therapy animals (p <0.05). Septic shock induction by caecal ligation and puncture resulted in a 160-hour survival rate of about 25%. In contrast, direct adenosine deaminase-1 inhibition resulted in a survival rate of about 75% (p = 0.0018). A protective effect was still present when erythro-9-[2-hydroxyl-3-nonyl]-adenine treatment was delayed for four hours (55%, p = 0.029). Conclusions: We present further evidence of the beneficial effects achieved by administering erythro-9-[2-hydroxyl-3-nonyl]-adenine, an adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibitor, in an endotoxicosis and sepsis animal model. This suggests a potential therapeutic option in the treatment of septic conditions.

AB - Introduction: The treatment of septic conditions in critically ill patients is still one of medicine's major challenges. Cyclic nucleotides, adenosine and its receptors play a pivotal role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction. The aim of this study was to verify the hypothesis that adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be beneficial in experimental endotoxicosis/sepsis. Method: We used two established animal models for endotoxicosis and sepsis. Twenty-four male Wistar rats that had been given intravenous endotoxin (Escherichia coli lipopolysaccharide) were treated with either erythro-9-[2-hydroxyl-3-nonyl]-adenine infusion or 0.9% saline during a study length of 120 minutes. Sepsis in 84 female C57BL/6 mice was induced by caecal ligation and puncture. Animals were treated with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed treatment. Results: In endotoxaemic rats, intestinal production of hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to 411.4 +/- 124.6 μmol/l and uric acid formation increased from 1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-nonyl]-adenine, we found no elevation of adenosine metabolites. The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control animals; p = 2.5 × 10-7) reflects a highly permeable small intestine and through the application of erythro-9-[2-hydroxyl-3-nonyl]-adenine, intestinal permeability could be re-established. The lipopolysaccharide animals had decreased L-rhamnose/ 3-O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa damage score of the septic animals was higher compared with control and therapy animals (p <0.05). Septic shock induction by caecal ligation and puncture resulted in a 160-hour survival rate of about 25%. In contrast, direct adenosine deaminase-1 inhibition resulted in a survival rate of about 75% (p = 0.0018). A protective effect was still present when erythro-9-[2-hydroxyl-3-nonyl]-adenine treatment was delayed for four hours (55%, p = 0.029). Conclusions: We present further evidence of the beneficial effects achieved by administering erythro-9-[2-hydroxyl-3-nonyl]-adenine, an adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibitor, in an endotoxicosis and sepsis animal model. This suggests a potential therapeutic option in the treatment of septic conditions.

UR - http://www.scopus.com/inward/record.url?scp=56349099258&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=56349099258&partnerID=8YFLogxK

U2 - 10.1186/cc7033

DO - 10.1186/cc7033

M3 - Article

VL - 12

JO - Critical Care

JF - Critical Care

SN - 1364-8535

IS - 5

M1 - R125

ER -