The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis: A prospective, randomised laboratory investigation

Nalan Kayhan, Benjamin Funke, Lars Oliver Conzelmann, Harald Winkler, Stefan Hofer, Jochen Steppan, Hubert Bardenheuer, Christian Friedrich Vahl, Markus A. Weigand

Research output: Contribution to journalArticlepeer-review

Abstract

Introduction: The treatment of septic conditions in critically ill patients is still one of medicine's major challenges. Cyclic nucleotides, adenosine and its receptors play a pivotal role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction. The aim of this study was to verify the hypothesis that adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be beneficial in experimental endotoxicosis/sepsis. Method: We used two established animal models for endotoxicosis and sepsis. Twenty-four male Wistar rats that had been given intravenous endotoxin (Escherichia coli lipopolysaccharide) were treated with either erythro-9-[2-hydroxyl-3-nonyl]-adenine infusion or 0.9% saline during a study length of 120 minutes. Sepsis in 84 female C57BL/6 mice was induced by caecal ligation and puncture. Animals were treated with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed treatment. Results: In endotoxaemic rats, intestinal production of hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to 411.4 +/- 124.6 μmol/l and uric acid formation increased from 1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-nonyl]-adenine, we found no elevation of adenosine metabolites. The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control animals; p = 2.5 × 10-7) reflects a highly permeable small intestine and through the application of erythro-9-[2-hydroxyl-3-nonyl]-adenine, intestinal permeability could be re-established. The lipopolysaccharide animals had decreased L-rhamnose/ 3-O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa damage score of the septic animals was higher compared with control and therapy animals (p < 0.05). Septic shock induction by caecal ligation and puncture resulted in a 160-hour survival rate of about 25%. In contrast, direct adenosine deaminase-1 inhibition resulted in a survival rate of about 75% (p = 0.0018). A protective effect was still present when erythro-9-[2-hydroxyl-3-nonyl]-adenine treatment was delayed for four hours (55%, p = 0.029). Conclusions: We present further evidence of the beneficial effects achieved by administering erythro-9-[2-hydroxyl-3-nonyl]-adenine, an adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibitor, in an endotoxicosis and sepsis animal model. This suggests a potential therapeutic option in the treatment of septic conditions.

Original languageEnglish (US)
Article numberR125
JournalCritical Care
Volume12
Issue number5
DOIs
StatePublished - Oct 13 2008
Externally publishedYes

ASJC Scopus subject areas

  • Critical Care and Intensive Care Medicine

Fingerprint Dive into the research topics of 'The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis: A prospective, randomised laboratory investigation'. Together they form a unique fingerprint.

Cite this