Thalamus segmentation using multi-modal feature classification: Validation and pilot study of an age-matched cohort

Jeffrey Glaister, Aaron Carass, Tziona NessAiver, Joshua V. Stough, Shiv Saidha, Peter A. Calabresi, Jerry L. Prince

Research output: Contribution to journalArticlepeer-review

Abstract

Automatic segmentation of the thalamus can be used to measure differences and track changes in thalamic volume that may occur due to disease, injury or normal aging. An automatic thalamus segmentation algorithm incorporating features from diffusion tensor imaging (DTI) and thalamus priors constructed from multiple atlases is proposed. Multiple atlases with corresponding manual thalamus segmentations are registered to the target image and averaged to generate the thalamus prior. At each voxel in a region of interest around the thalamus, a multidimensional feature vector that includes the thalamus prior as well as a set of DTI features, including fractional anisotropy, mean diffusivity, and fiber orientation is formed. A random forest is trained to classify each voxel as belonging to the thalamus or background within the region of interest. Using a leave-one-out cross-validation on nine subjects, the proposed algorithm achieves a mean Dice score of 0.878 and 0.890 for the left and right thalami, respectively, which are higher Dice scores than the three state-of-art methods we compared to. We demonstrate the utility of the method with a pilot study exploring the difference in the thalamus fraction between 21 multiple sclerosis (MS) patients and 21 age-matched healthy controls. The left and right thalamic volumes (normalized by intracranial volumes) are larger in healthy controls by 7.6% and 7.3% respectively, compared to MS patients (though neither result is statistically significant).

Original languageEnglish (US)
Pages (from-to)430-440
Number of pages11
JournalNeuroImage
Volume158
DOIs
StatePublished - Sep 2017

Keywords

  • Diffusion MRI
  • Magnetic resonance imaging
  • Thalamus segmentation

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience

Fingerprint Dive into the research topics of 'Thalamus segmentation using multi-modal feature classification: Validation and pilot study of an age-matched cohort'. Together they form a unique fingerprint.

Cite this