Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat

Thomas Lu, Xiaoqin Wang

Research output: Contribution to journalArticle

Abstract

The present study investigated neural responses to rapid, repetitive stimuli in the primary auditory cortex (A1) of cats. We focused on two important issues regarding cortical coding of sequences of stimuli: temporal discharge patterns of A1 neurons as a function of inter-stimulus interval and cortical mechanisms for representing successive stimulus events separated by very short intervals. These issues were studied using wide- and narrowband click trains with inter-click intervals (ICIs) ranging from 3 to 100 ms as a class of representative sequential stimuli. The main findings of this study are 1) A1 units displayed, in response to click train stimuli, three distinct temporal discharge patterns that we classify as regions I, II, and III. At long ICIs nearly all A1 units exhibited typical stimulus-synchronized response patterns (region I) consistent with previously reported observations. At intermediate ICIs, no clear temporal structures were visible in the responses of most A1 units (region II). At short ICIs, temporal discharge patterns are characterized by the presence of either intrinsic oscillations (at ~10 Hz) or a change in discharge rate that was a monotonically decreasing function of ICI (region III). In some A1 units, temporal discharge patterns corresponding to region III were absent. 2) The boundary between regions I and II (synchronization boundary) had a median value of 39.8 ms ICI ([25%, 75%] = [20.4, 58.8] ms ICI; n = 131). The median boundary between regions II and III was estimated at 6.3 ms ([25%, 75%] = [5.2, 9.7] ms ICI; n = 47) for units showing rate changes (rate-change boundary). 3) The boundary values between different regions appeared to be relatively independent of stimulus intensity (at modest sound levels) or the bandwidth of the clicks used. 4) There is a weak correlation between a unit's synchronization boundary and its response latency. Units with shorter latencies appeared to also have smaller boundary values. And 5) based on these findings, we proposed a two-stage model for A1 neurons to represent a wide range of ICIs. In this model, A1 uses a temporal code for explicitly representing long ICIs and a rate code for implicitly representing short ICIs.

Original languageEnglish (US)
Pages (from-to)236-246
Number of pages11
JournalJournal of Neurophysiology
Volume84
Issue number1
StatePublished - 2000

Fingerprint

Auditory Cortex
Cats
Neurons
Reaction Time

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

@article{2d9ecbe6a14e4267bfdd5c2a4831ab67,
title = "Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat",
abstract = "The present study investigated neural responses to rapid, repetitive stimuli in the primary auditory cortex (A1) of cats. We focused on two important issues regarding cortical coding of sequences of stimuli: temporal discharge patterns of A1 neurons as a function of inter-stimulus interval and cortical mechanisms for representing successive stimulus events separated by very short intervals. These issues were studied using wide- and narrowband click trains with inter-click intervals (ICIs) ranging from 3 to 100 ms as a class of representative sequential stimuli. The main findings of this study are 1) A1 units displayed, in response to click train stimuli, three distinct temporal discharge patterns that we classify as regions I, II, and III. At long ICIs nearly all A1 units exhibited typical stimulus-synchronized response patterns (region I) consistent with previously reported observations. At intermediate ICIs, no clear temporal structures were visible in the responses of most A1 units (region II). At short ICIs, temporal discharge patterns are characterized by the presence of either intrinsic oscillations (at ~10 Hz) or a change in discharge rate that was a monotonically decreasing function of ICI (region III). In some A1 units, temporal discharge patterns corresponding to region III were absent. 2) The boundary between regions I and II (synchronization boundary) had a median value of 39.8 ms ICI ([25{\%}, 75{\%}] = [20.4, 58.8] ms ICI; n = 131). The median boundary between regions II and III was estimated at 6.3 ms ([25{\%}, 75{\%}] = [5.2, 9.7] ms ICI; n = 47) for units showing rate changes (rate-change boundary). 3) The boundary values between different regions appeared to be relatively independent of stimulus intensity (at modest sound levels) or the bandwidth of the clicks used. 4) There is a weak correlation between a unit's synchronization boundary and its response latency. Units with shorter latencies appeared to also have smaller boundary values. And 5) based on these findings, we proposed a two-stage model for A1 neurons to represent a wide range of ICIs. In this model, A1 uses a temporal code for explicitly representing long ICIs and a rate code for implicitly representing short ICIs.",
author = "Thomas Lu and Xiaoqin Wang",
year = "2000",
language = "English (US)",
volume = "84",
pages = "236--246",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat

AU - Lu, Thomas

AU - Wang, Xiaoqin

PY - 2000

Y1 - 2000

N2 - The present study investigated neural responses to rapid, repetitive stimuli in the primary auditory cortex (A1) of cats. We focused on two important issues regarding cortical coding of sequences of stimuli: temporal discharge patterns of A1 neurons as a function of inter-stimulus interval and cortical mechanisms for representing successive stimulus events separated by very short intervals. These issues were studied using wide- and narrowband click trains with inter-click intervals (ICIs) ranging from 3 to 100 ms as a class of representative sequential stimuli. The main findings of this study are 1) A1 units displayed, in response to click train stimuli, three distinct temporal discharge patterns that we classify as regions I, II, and III. At long ICIs nearly all A1 units exhibited typical stimulus-synchronized response patterns (region I) consistent with previously reported observations. At intermediate ICIs, no clear temporal structures were visible in the responses of most A1 units (region II). At short ICIs, temporal discharge patterns are characterized by the presence of either intrinsic oscillations (at ~10 Hz) or a change in discharge rate that was a monotonically decreasing function of ICI (region III). In some A1 units, temporal discharge patterns corresponding to region III were absent. 2) The boundary between regions I and II (synchronization boundary) had a median value of 39.8 ms ICI ([25%, 75%] = [20.4, 58.8] ms ICI; n = 131). The median boundary between regions II and III was estimated at 6.3 ms ([25%, 75%] = [5.2, 9.7] ms ICI; n = 47) for units showing rate changes (rate-change boundary). 3) The boundary values between different regions appeared to be relatively independent of stimulus intensity (at modest sound levels) or the bandwidth of the clicks used. 4) There is a weak correlation between a unit's synchronization boundary and its response latency. Units with shorter latencies appeared to also have smaller boundary values. And 5) based on these findings, we proposed a two-stage model for A1 neurons to represent a wide range of ICIs. In this model, A1 uses a temporal code for explicitly representing long ICIs and a rate code for implicitly representing short ICIs.

AB - The present study investigated neural responses to rapid, repetitive stimuli in the primary auditory cortex (A1) of cats. We focused on two important issues regarding cortical coding of sequences of stimuli: temporal discharge patterns of A1 neurons as a function of inter-stimulus interval and cortical mechanisms for representing successive stimulus events separated by very short intervals. These issues were studied using wide- and narrowband click trains with inter-click intervals (ICIs) ranging from 3 to 100 ms as a class of representative sequential stimuli. The main findings of this study are 1) A1 units displayed, in response to click train stimuli, three distinct temporal discharge patterns that we classify as regions I, II, and III. At long ICIs nearly all A1 units exhibited typical stimulus-synchronized response patterns (region I) consistent with previously reported observations. At intermediate ICIs, no clear temporal structures were visible in the responses of most A1 units (region II). At short ICIs, temporal discharge patterns are characterized by the presence of either intrinsic oscillations (at ~10 Hz) or a change in discharge rate that was a monotonically decreasing function of ICI (region III). In some A1 units, temporal discharge patterns corresponding to region III were absent. 2) The boundary between regions I and II (synchronization boundary) had a median value of 39.8 ms ICI ([25%, 75%] = [20.4, 58.8] ms ICI; n = 131). The median boundary between regions II and III was estimated at 6.3 ms ([25%, 75%] = [5.2, 9.7] ms ICI; n = 47) for units showing rate changes (rate-change boundary). 3) The boundary values between different regions appeared to be relatively independent of stimulus intensity (at modest sound levels) or the bandwidth of the clicks used. 4) There is a weak correlation between a unit's synchronization boundary and its response latency. Units with shorter latencies appeared to also have smaller boundary values. And 5) based on these findings, we proposed a two-stage model for A1 neurons to represent a wide range of ICIs. In this model, A1 uses a temporal code for explicitly representing long ICIs and a rate code for implicitly representing short ICIs.

UR - http://www.scopus.com/inward/record.url?scp=0033943430&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033943430&partnerID=8YFLogxK

M3 - Article

VL - 84

SP - 236

EP - 246

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 1

ER -