Targeting CAIX with [ 64 Cu]XYIMSR-06 Small Molecular Radiotracer Enables Noninvasive PET Imaging of Malignant Glioma in U87 MG Tumor Cell Xenograft Mice

Xianteng Yang, Hua Zhu, Xing Yang, Nan Li, Haifeng Huang, Teli Liu, Xiaoyi Guo, Xiaoxia Xu, Lei Xia, Chaoyong Deng, Xiaobin Tian, Zhi Yang

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Carbonic anhydrase IX (CAIX) plays an important role in glioma cell proliferation, invasion, metastasis, and resistance to radiotherapy and chemotherapy. An effective and noninvasive PET molecular imaging agent targeting CAIX would help its diagnosis and treatment but is not currently available. Recently, a low-molecular-weight (LMW) CAIX targeting agent, [ 64 Cu]XYIMSR-06, was reported to have significantly improved properties for targeting clear cell renal cell carcinoma (ccRCC). We are encouraged to investigate the feasibility of adapting this agent for the diagnosis and treatment of CAIX-overexpressing malignant glioma. In vitro cell uptake and binding affinity assays were used to verify the binding capacity of [ 64 Cu]XYIMSR-06 to U87 MG tumor cells in which CAIX overexpression was confirmed. The U87 MG tumor-bearing mouse (in situ and subcutaneous) model was built, and mice were injected with the radiotracer and/or coinjected with acetazolamide (0.2 g/kg) as a blocking agent for noninvasive micro-PET imaging. Micro-PET imaging was performed at 2, 4, and 8 h postinjection. ROI (region of interest)-based semiquantification was performed in an orthotopic glioma tumor model. Biodistribution throughout each organ was performed at 2, 4, 4 h block, 8, and 24 h postinjection. Hematoxylin and eosin (HE) staining and immunofluorescence or immunohistochemistry (IF/IHC) staining were implemented postimaging to assess the expression of CAIX in tumor organs. In vitro, [ 64 Cu]XYIMSR-06 exhibits greater uptake in glioma cells (high CAIX expression) than in HCT116 cells (low CAIX expression). The binding affinity of [ 64 Cu]XYIMSR-06 to U87 MG cell lines reaches up to 4.22 nM. Both orthotopic and subcutaneous tumors were clearly visualized at 2-8 h postinjection. Biodistribution studies demonstrated a maximum tumor uptake of 3.13% ID/g at 4 h postinjection, and the tumor to brain ratio (T/brain) was 6.51 at 8 h postinjection. The ROI-based T/brain values were 7.03 and 5.46 at 2 and 8 h postinjection, respectively. Histopathological analysis confirmed the overexpression of CAIX in gliomas, and the area of CAIX-positive IF staining is extremely consistent with the morphology on micro-PET imaging. In this study, [ 64 Cu]XYIMSR-06 demonstrated specific accumulation in CAIX-expressing U87 MG glioma tumors, indicating that the radiotracer has the potential for noninvasively monitoring and guiding personalized treatment of malignant glioma and other tumors overexpressing CAIX.

Original languageEnglish (US)
Pages (from-to)1532-1540
Number of pages9
JournalMolecular Pharmaceutics
Issue number4
StatePublished - Apr 1 2019


  • [ Cu]XYIMSR-06
  • carbonic anhydrase IX
  • glioma
  • positron emission tomography imaging

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery


Dive into the research topics of 'Targeting CAIX with [ 64 Cu]XYIMSR-06 Small Molecular Radiotracer Enables Noninvasive PET Imaging of Malignant Glioma in U87 MG Tumor Cell Xenograft Mice'. Together they form a unique fingerprint.

Cite this