Systemic perfusion: a method of enhancing relative tumor uptake of radiolabeled monoclonal antibodies

Richard L. Wahl, Cynthia R. Piko, Barbara A. Beers, Onelio Geatti, Jon Johnson, Phil Sherman

Research output: Contribution to journalArticle

Abstract

We evaluated the feasibility of systemic vascular perfusion with saline (mimicking plasmapheresis) as a method to enhance tumor-specific monoclonal antibody (MoAb) tumor/background ratios. Initially, groups of rats were injected intravenously (i.v.) with 131I-5G6.4 MoAb (murine IgG2aK reactive with ovarian carcinoma). These animal's radioactivity levels were determined by dose calibrator and they were imaged before and after perfusion which was conducted at 4 or 24 h post-antibody injection. Animals were sacrificed after perfusion, as were controls, and normal organ radioactivity levels determined. In addition, nude mice bearing HTB77 ovarian cancers subcutaneously were injected i.v. with 131I-5G6.4 MoAb and were imaged before and after systemic perfusion with saline 24 h post-5G6.4 injection. Perfusion in rats dropped whole-body 5G6.4 levels significantly at both perfusion times (P < 0.0005). The drop in whole-body radioactivity with perfusion was significantly greater for the animals perfused at 4 h post i.v. 5G6.4 antibody injection (48.3 ± 5.1%) than for those perfused at 24 h post i.v. antibody injection (32.9 ± 2.9%) (P < 0.025). In the nude mice with ovarian cancer xenografts, γ camera images of tumors were visually and quantitatively (by computer image analysis) enhanced by perfusion, with a 2.33-fold greater decline in whole body uptake than in the tumor (P < 0.05). These studies show that (1) much background antibody radioactivity can be removed using whole-body perfusion with saline, (2) that the decline in whole body activity is larger with 4 than 24 h perfusion and (3) tumor imaging can be enhanced by this approach. This and similar approaches that increase relative tumor antibody uptake such as plasmapheresis may be useful in imaging and therapy with radiolabeled antibodies.

Original languageEnglish (US)
Pages (from-to)611-616
Number of pages6
JournalInternational Journal of Radiation Applications and Instrumentation.
Volume15
Issue number6
DOIs
StatePublished - 1988

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Systemic perfusion: a method of enhancing relative tumor uptake of radiolabeled monoclonal antibodies'. Together they form a unique fingerprint.

  • Cite this