Systematic assessment of microneedle injection into the mouse cornea.

Mario Matthaei, Huan Meng, Imran Bhutto, Qingguo Xu, Edwin Boelke, Justin S Hanes, Albert Jun

Research output: Contribution to journalArticle

Abstract

Corneal intrastromal injection is an important mode of gene-vector application to subepithelial layers. In a mouse model, this procedure is substantially complicated by the reduced corneal dimensions. Furthermore, it may be difficult to estimate the corneal area reached by the volume of a single injection. This study aimed to investigate intrastromal injections into the mouse cornea using different microneedles and to quantify the effect of injecting varying volumes. A reproducible injection technique is described. Forty eyes of 20 129 Sv/J mice were tested. India ink was intrastromally injected using 30° beveled 33 G needles, tri-surface 25° beveled 35 G needles, or hand-pulled and 25° beveled glass needles. Each eye received a single injection of a volume of 1 or 2 μL. Corneoscleral buttons were fixed and flat mounted for computer-assisted quantification of the affected corneal area. Histological assessment was performed to investigate the intrastromal location of the injected dye. A mean corneal area of 5.0 ± 1.4 mm(2) (mean ± SD) and 7.7 ± 1.4 mm(2) was covered by intrastromal injections of 1 and 2 μL, respectively. The mean percentage of total corneal area reached ranged from 39% to 53% for 1 μL injections, and from 65% to 81% for 2 μL injections. Injections using the 33 G needles tended to provide the highest distribution area. Perforation rates were 8% for 30° beveled 33 G needles and 44% for tri-surface beveled 35 G needles. No perforation was observed with glass needle; however, intrastromal breakage of needle tips was noted in 25% of these cases. Intracorneal injection using a 30° beveled 33 G needle was safe and effective. The use of tri-surface beveled 35 G needles substantially increased the number of corneal perforations. Glass needles may break inside the corneal stroma. Injections of 1 μL and 2 μL resulted in an overall mean of 49% and 73% respectively of total corneal area involved.

Original languageEnglish (US)
Pages (from-to)19
Number of pages1
JournalEuropean Journal of Medical Research
Volume17
StatePublished - 2012
Externally publishedYes

Fingerprint

Cornea
Needles
Injections
Glass
Corneal Perforation
Corneal Stroma
Coloring Agents
Hand

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Systematic assessment of microneedle injection into the mouse cornea. / Matthaei, Mario; Meng, Huan; Bhutto, Imran; Xu, Qingguo; Boelke, Edwin; Hanes, Justin S; Jun, Albert.

In: European Journal of Medical Research, Vol. 17, 2012, p. 19.

Research output: Contribution to journalArticle

@article{41879a82475d42238f230d8e976e432a,
title = "Systematic assessment of microneedle injection into the mouse cornea.",
abstract = "Corneal intrastromal injection is an important mode of gene-vector application to subepithelial layers. In a mouse model, this procedure is substantially complicated by the reduced corneal dimensions. Furthermore, it may be difficult to estimate the corneal area reached by the volume of a single injection. This study aimed to investigate intrastromal injections into the mouse cornea using different microneedles and to quantify the effect of injecting varying volumes. A reproducible injection technique is described. Forty eyes of 20 129 Sv/J mice were tested. India ink was intrastromally injected using 30° beveled 33 G needles, tri-surface 25° beveled 35 G needles, or hand-pulled and 25° beveled glass needles. Each eye received a single injection of a volume of 1 or 2 μL. Corneoscleral buttons were fixed and flat mounted for computer-assisted quantification of the affected corneal area. Histological assessment was performed to investigate the intrastromal location of the injected dye. A mean corneal area of 5.0 ± 1.4 mm(2) (mean ± SD) and 7.7 ± 1.4 mm(2) was covered by intrastromal injections of 1 and 2 μL, respectively. The mean percentage of total corneal area reached ranged from 39{\%} to 53{\%} for 1 μL injections, and from 65{\%} to 81{\%} for 2 μL injections. Injections using the 33 G needles tended to provide the highest distribution area. Perforation rates were 8{\%} for 30° beveled 33 G needles and 44{\%} for tri-surface beveled 35 G needles. No perforation was observed with glass needle; however, intrastromal breakage of needle tips was noted in 25{\%} of these cases. Intracorneal injection using a 30° beveled 33 G needle was safe and effective. The use of tri-surface beveled 35 G needles substantially increased the number of corneal perforations. Glass needles may break inside the corneal stroma. Injections of 1 μL and 2 μL resulted in an overall mean of 49{\%} and 73{\%} respectively of total corneal area involved.",
author = "Mario Matthaei and Huan Meng and Imran Bhutto and Qingguo Xu and Edwin Boelke and Hanes, {Justin S} and Albert Jun",
year = "2012",
language = "English (US)",
volume = "17",
pages = "19",
journal = "European Journal of Medical Research",
issn = "0949-2321",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Systematic assessment of microneedle injection into the mouse cornea.

AU - Matthaei, Mario

AU - Meng, Huan

AU - Bhutto, Imran

AU - Xu, Qingguo

AU - Boelke, Edwin

AU - Hanes, Justin S

AU - Jun, Albert

PY - 2012

Y1 - 2012

N2 - Corneal intrastromal injection is an important mode of gene-vector application to subepithelial layers. In a mouse model, this procedure is substantially complicated by the reduced corneal dimensions. Furthermore, it may be difficult to estimate the corneal area reached by the volume of a single injection. This study aimed to investigate intrastromal injections into the mouse cornea using different microneedles and to quantify the effect of injecting varying volumes. A reproducible injection technique is described. Forty eyes of 20 129 Sv/J mice were tested. India ink was intrastromally injected using 30° beveled 33 G needles, tri-surface 25° beveled 35 G needles, or hand-pulled and 25° beveled glass needles. Each eye received a single injection of a volume of 1 or 2 μL. Corneoscleral buttons were fixed and flat mounted for computer-assisted quantification of the affected corneal area. Histological assessment was performed to investigate the intrastromal location of the injected dye. A mean corneal area of 5.0 ± 1.4 mm(2) (mean ± SD) and 7.7 ± 1.4 mm(2) was covered by intrastromal injections of 1 and 2 μL, respectively. The mean percentage of total corneal area reached ranged from 39% to 53% for 1 μL injections, and from 65% to 81% for 2 μL injections. Injections using the 33 G needles tended to provide the highest distribution area. Perforation rates were 8% for 30° beveled 33 G needles and 44% for tri-surface beveled 35 G needles. No perforation was observed with glass needle; however, intrastromal breakage of needle tips was noted in 25% of these cases. Intracorneal injection using a 30° beveled 33 G needle was safe and effective. The use of tri-surface beveled 35 G needles substantially increased the number of corneal perforations. Glass needles may break inside the corneal stroma. Injections of 1 μL and 2 μL resulted in an overall mean of 49% and 73% respectively of total corneal area involved.

AB - Corneal intrastromal injection is an important mode of gene-vector application to subepithelial layers. In a mouse model, this procedure is substantially complicated by the reduced corneal dimensions. Furthermore, it may be difficult to estimate the corneal area reached by the volume of a single injection. This study aimed to investigate intrastromal injections into the mouse cornea using different microneedles and to quantify the effect of injecting varying volumes. A reproducible injection technique is described. Forty eyes of 20 129 Sv/J mice were tested. India ink was intrastromally injected using 30° beveled 33 G needles, tri-surface 25° beveled 35 G needles, or hand-pulled and 25° beveled glass needles. Each eye received a single injection of a volume of 1 or 2 μL. Corneoscleral buttons were fixed and flat mounted for computer-assisted quantification of the affected corneal area. Histological assessment was performed to investigate the intrastromal location of the injected dye. A mean corneal area of 5.0 ± 1.4 mm(2) (mean ± SD) and 7.7 ± 1.4 mm(2) was covered by intrastromal injections of 1 and 2 μL, respectively. The mean percentage of total corneal area reached ranged from 39% to 53% for 1 μL injections, and from 65% to 81% for 2 μL injections. Injections using the 33 G needles tended to provide the highest distribution area. Perforation rates were 8% for 30° beveled 33 G needles and 44% for tri-surface beveled 35 G needles. No perforation was observed with glass needle; however, intrastromal breakage of needle tips was noted in 25% of these cases. Intracorneal injection using a 30° beveled 33 G needle was safe and effective. The use of tri-surface beveled 35 G needles substantially increased the number of corneal perforations. Glass needles may break inside the corneal stroma. Injections of 1 μL and 2 μL resulted in an overall mean of 49% and 73% respectively of total corneal area involved.

UR - http://www.scopus.com/inward/record.url?scp=84875620104&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84875620104&partnerID=8YFLogxK

M3 - Article

C2 - 22716296

AN - SCOPUS:84875620104

VL - 17

SP - 19

JO - European Journal of Medical Research

JF - European Journal of Medical Research

SN - 0949-2321

ER -