Synthetic chromosome fusion: Effects on genome structure and function

Jingchuan Luo, Guillaume Mercy, Luis A. Vale-Silva, Xiaoji Sun, Neta Agmon, Weimin Zhang, Kun Yang, Giovanni Stracquadanio, Agnès Thierry, Ju Young Ahn, Greg Adoff, Andrew D’Avino, Henri Berger, Yi Chen, Michael Chickering, Oren Fishman, Rebeca Vergara Greeno, Sangmin Kim, Sunghan Kim, Hong Seo LimJay Im, Lauren Meyer, Allison Moyer, Surekha Mullangi, Natalie A. Murphy, Peter Natov, Maisa Nimer, Arthur Radley, Arushi Tripathy, Tony Wang, Nick Wilkerson, Tony Zheng, Vivian Zhou, David B. Kaback, Joel S. Bader, Leslie A. Mitchell, Julien Mozziconacci, Andreas Hochwagen, Romain Koszul, Jef D Boeke

Research output: Contribution to journalArticlepeer-review


As part of the Synthetic Yeast 2.0 (Sc2.0) project, we designed and synthesized synthetic chromosome I. The total length of synI is ~21.4% shorter than wild-type chromosome I, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns of potential instability and karyotype imbalance. We used a variation of a previously developed, robust CRISPR-Cas9 method to fuse chromosome I to other chromosome arms of varying length: chrIXR (84 kb), chrIIIR (202 kb) and chrIVR (1 Mb). All fusion chromosome strains grew like wild-type so we decided to attach synI to synIII. Through the investigation of three-dimensional structures of fusion chromosome strains, unexpected loops and twisted structures were formed in chrIII-I and chrIX-III-I fusion chromosomes, which depend on silencing protein Sir3. These results suggest a previously unappreciated 3D interaction between HMR and the adjacent telomere. We used these fusion chromosomes to show that axial element Red1 binding in meiosis is not strictly chromosome size dependent even though Red1 binding is enriched on the three smallest chromosomes in wild-type yeast, and we discovered an unexpected role for centromeres in Red1 binding patterns.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Aug 1 2018

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Synthetic chromosome fusion: Effects on genome structure and function'. Together they form a unique fingerprint.

Cite this