Synthesizing MR contrast and resolution through a patch matching technique

Snehashis Roy, Aaron Carass, Jerry L. Prince

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Tissue contrast and resolution of magnetic resonance neuroimaging data have strong impacts on the utility of the data in clinical and neuroscience tasks such as registration and segmentation. Lengthy acquisition times typically prevent routine acquisition of multiple MR tissue contrast images at high resolution, and the opportunity for detailed analysis using these data would seem to be irrevocably lost. This paper describes an example based approach using patch matching from a multiple resolution multiple contrast atlas in order to change an image's resolution as well as its MR tissue contrast from one pulse-sequence to that of another. The use of this approach to generate different tissue contrasts (T2/PD/FLAIR) from a single T1-weighted image is demonstrated on both phantom and real images.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2010
Subtitle of host publicationImage Processing
EditionPART 1
DOIs
StatePublished - Dec 1 2010
EventMedical Imaging 2010: Image Processing - San Diego, CA, United States
Duration: Feb 14 2010Feb 16 2010

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
NumberPART 1
Volume7623
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2010: Image Processing
CountryUnited States
CitySan Diego, CA
Period2/14/102/16/10

Keywords

  • Image classification
  • MR tissue contrast
  • atlas
  • contrast synthesis
  • image hallucination
  • resolution
  • segmentation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Synthesizing MR contrast and resolution through a patch matching technique'. Together they form a unique fingerprint.

Cite this