TY - JOUR
T1 - Synthesis and characterization of DNA duplexes containing an N4C-ethyl-N4C interstrand cross-link
AU - Noll, D. M.
AU - Noronha, A. M.
AU - Miller, P. S.
PY - 2001/10/2
Y1 - 2001/10/2
N2 - Short DNA duplexes containing an N4C-ethyl-N4C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C4 overhang at their 5′-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5′-end with O4-triazoyl-2′-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5′-dimethoxytrityl-3′-O-tert-butyldimethylsilyl-N4- (2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5′-hydroxyl groups of the cross-link using protected nucleoside 3′-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3′-direction from the resulting 3′-hydroxyl of the cross-link using protected nucleoside 5′-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDITOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A260 profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.
AB - Short DNA duplexes containing an N4C-ethyl-N4C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C4 overhang at their 5′-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5′-end with O4-triazoyl-2′-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5′-dimethoxytrityl-3′-O-tert-butyldimethylsilyl-N4- (2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5′-hydroxyl groups of the cross-link using protected nucleoside 3′-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3′-direction from the resulting 3′-hydroxyl of the cross-link using protected nucleoside 5′-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDITOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A260 profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.
UR - http://www.scopus.com/inward/record.url?scp=0034821215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034821215&partnerID=8YFLogxK
U2 - 10.1021/ja003340t
DO - 10.1021/ja003340t
M3 - Article
C2 - 11472110
AN - SCOPUS:0034821215
VL - 123
SP - 3405
EP - 3411
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 15
ER -