Surface-enhanced Raman-scattering biosensor on nanoparticle Island substrates for DNA detection

W. Yuan, H. P. Ho, Rebecca Lee, S. K. Kong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work presents a systematic study of the surface-enhanced Raman-scattering (SERS) properties of nanoparticle island substrates (NIS) and their application for oligonucleotide target detection. Using NIS that are structurally well characterized by atomic force microscopy (AFM) and UV-VIS extinction spectrum, it demonstrates the correlation of nanostructure of substrates and extinction maximum (λmax)of substrates fabricated on different conditions, i.e. thickness of metal Ag. To effectively implement SERS on NIS and find out optimal condition for DNA detection, the relationship between extinction maximum (λmax) and SERS enhancement factor (EF) was explored in detail. In fact, this work demonstrates high S/N ratio SERS spectra can be achieved for NIS with λmax within a spectrum window (~60nm) consisting by the excitation wavelength (514nm) and the scattered Raman wavelength, and highest EF measured is about out 4 ×108 with thickness of Ag being 50A. Detection of oligonucleotide target has been performed with a sandwich assay scheme. In this scheme a layer of thiol modified receptor oligonucleotide was assembled on NIS and 3' of oligonucleotide probe has been labeled with a Raman-active dye. Furthermore, We compared the detection performance of strategies using probe oligonucleotide with or without gold nanoparticles (Au-NPs,20nm) capped on 5'. The experimental results reveal that the DNA detection implemented with NIS can provide high sensitivity, and both dynamic range and diction limit can be amplified with the aid of Au-NPs on 5' of probes. The current detection limits of NIS with and without Au-NPs are 0.4 femtomolar and 1 nanomolar respectively.

Original languageEnglish (US)
Title of host publicationAsia Optical Fiber Communication and Optoelectronic Exposition and Conference, AOE 2008
PublisherOptical Society of America (OSA)
ISBN (Print)9781557528636
DOIs
StatePublished - 2008
Externally publishedYes
EventAsia Optical Fiber Communication and Optoelectronic Exposition and Conference, AOE 2008 - Shanghai, China
Duration: Oct 30 2008Nov 2 2008

Publication series

NameOptics InfoBase Conference Papers
ISSN (Electronic)2162-2701

Other

OtherAsia Optical Fiber Communication and Optoelectronic Exposition and Conference, AOE 2008
Country/TerritoryChina
CityShanghai
Period10/30/0811/2/08

ASJC Scopus subject areas

  • Instrumentation
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Surface-enhanced Raman-scattering biosensor on nanoparticle Island substrates for DNA detection'. Together they form a unique fingerprint.

Cite this