Substituted N-Phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides Are Valuable Antitubercular Candidates that Evade Innate Efflux Machinery

Elisa Azzali, Diana Machado, Amit Kaushik, Federica Vacondio, Sara Flisi, Clotilde Silvia Cabassi, Gyanu Lamichhane, Miguel Viveiros, Gabriele Costantino, Marco Pieroni

Research output: Contribution to journalArticle

Abstract

Tuberculosis remains one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extremely drug-resistant strains is a significant reason for concern. This makes the discovery of novel antitubercular agents a cogent priority. We have previously addressed this need by reporting a series of substituted 2-aminothiazoles capable to inhibit the growth of actively replicating, nonreplicating persistent, and resistant Mycobacterium tuberculosis strains. Clues from the structure-activity relationships lining up the antitubercular activity were exploited for the rational design of improved analogues. Two compounds, namely N-phenyl-5-(2-(p-tolylamino)thiazol-4-yl)isoxazole-3-carboxamide 7a and N-(pyridin-2-yl)-5-(2-(p-tolylamino)thiazol-4-yl)isoxazole-3-carboxamide 8a, were found to show high inhibitory activity toward susceptible M. tuberculosis strains, with an MIC90 of 0.125-0.25 μg/mL (0.33-0.66 μM) and 0.06-0.125 μg/mL (0.16-0.32 μM), respectively. Moreover, they maintained good activity also toward resistant strains, and they were selective over other bacterial species and eukaryotic cells, metabolically stable, and apparently not susceptible to the action of efflux pumps.

Original languageEnglish (US)
Pages (from-to)7108-7122
Number of pages15
JournalJournal of Medicinal Chemistry
Volume60
Issue number16
DOIs
Publication statusPublished - Aug 24 2017

    Fingerprint

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery

Cite this