Structural signature of classical versus late-onset friedreich's ataxia by Multimodality brain MRI

Thiago Junqueira R. Rezende, Alberto Rolim M. Martinez, Ingrid Faber, Karen Girotto, José Luiz Pedroso, Orlando G. Barsottini, Iscia Lopes-Cendes, Fernando Cendes, Andreia V. Faria, Marcondes C. França

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Introduction: Friedreich's ataxia (FRDA) is the most common autosomal-recessive ataxia worldwide. It is characterized by early onset, sensory abnormalities, and slowly progressive ataxia. However, some individuals manifest the disease after the age of 25 years and are classified as late-onset FRDA (LOFA). Therefore, we propose a transversal multimodal MRI-based study to investigate which anatomical substrates are involved in classical (cFRDA) and LOFA. Methods: We enrolled 36 patients (13 with LOFA) and 29 healthy controls. All subjects underwent magnetic resonance imaging in a 3 T device; three-dimensional high-resolution T1-weighted images and diffusion tensor images were used to assess gray and white matter, respectively. We used T1 multiatlas approach to assess deep gray matter and cortical thickness measures to evaluate cerebral cortex and DTI multiatlas approach to assess white matter. All analyses were corrected for multiple comparisons. Results: Group comparison showed that both groups presented gray matter atrophy mostly in the motor cortex. Regarding white matter, we found abnormalities in the cerebellar peduncles, pyramidal tracts, midbrain, pons, and medulla oblongata for both groups, but the microstructural abnormalities in the cFRDA group were more widespread. In addition, we found that the corticospinal tract presented more severe microstructural damage in the LOFA group. Finally, the midbrain volume of the cFRDA, but not of the LOFA group, correlated with disease duration (R = −0.552, P = 0.012) and severity (R = −0.783, P < 0.001). Conclusion: The cFRDA and LOFA groups have similar, but not identical neuroimaging damage pattern. These structural differences might help to explain the phenotypic variability observed in FRDA. Hum Brain Mapp 38:4157–4168, 2017.

Original languageEnglish (US)
Pages (from-to)4157-4168
Number of pages12
JournalHuman Brain Mapping
Issue number8
StatePublished - Aug 2017


  • Friedreich's ataxia
  • LOFA
  • MRI
  • cortical thickness
  • multiatlas approach

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology


Dive into the research topics of 'Structural signature of classical versus late-onset friedreich's ataxia by Multimodality brain MRI'. Together they form a unique fingerprint.

Cite this