Structural optimization under uncertain loads and nodal locations

James K. Guest, Takeru Igusa

Research output: Contribution to journalArticlepeer-review

161 Scopus citations

Abstract

This paper presents algorithms for solving structural topology optimization problems with uncertainty in the magnitude and location of the applied loads and with small uncertainty in the location of the structural nodes. The second type of uncertainty would typically arise from fabrication errors where the tolerances for the node locations are small in relation to the length scale of the structural elements. We first review the discrete form of the uncertain loads problem, which has been previously solved using a weighted average of multiple load patterns. With minor modifications, we extend this solution to include loads described by continuous joint probability density functions. We then proceed to the main contribution of this paper: structural optimization under uncertainty in the nodal locations. This optimization problem is computationally difficult because it involves variations of the inverse of the structural stiffness matrix. It is shown, however, that for small uncertainties the problem can be recast into a simpler but equivalent structural optimization problem with equivalent uncertain loads. By expressing these equivalent loads in terms of continuous random variables, we are able to make use of the extended form of the uncertain loads problem presented in the first part of this paper. The optimization algorithms are developed in the context of minimum compliance (maximum stiffness) design. Simple examples are presented. The results demonstrate that load and nodal uncertainties can have dramatic impact on optimal design. For structures containing thin substructures under axial loads, it is shown that these uncertainties (a) are of first-order significance, influencing the linear elastic response quantities, and (b) can affect designs by avoiding unrealistically optimistic and potentially unstable structures. The additional computational cost associated with the uncertainties scales linearly with the number of uncertainties and is insignificant compared to the cost associated with solving the deterministic structural optimization problem.

Original languageEnglish (US)
Pages (from-to)116-124
Number of pages9
JournalComputer Methods in Applied Mechanics and Engineering
Volume198
Issue number1
DOIs
StatePublished - Nov 15 2008

Keywords

  • Construction tolerance
  • Fabrication error
  • Geometric uncertainty
  • Minimum compliance
  • Topology optimization

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • General Physics and Astronomy
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Structural optimization under uncertain loads and nodal locations'. Together they form a unique fingerprint.

Cite this