Structural and functional characterization of the Spo11 core complex

Corentin Claeys Bouuaert, Sam E. Tischfield, Stephen Pu, Eleni P. Mimitou, Ernesto Arias Palomo, James M. Berger, Scott Keeney

Research output: Contribution to journalArticlepeer-review


Spo11, which makes DNA double-strand breaks (DSBs) essential for meiotic recombination, is poorly understood mechanistically because it has been recalcitrant to biochemical study. Here, we provide a molecular analysis of S. cerevisiae Spo11 purified with partners Rec102, Rec104 and Ski8. Rec102 and Rec104 jointly resemble the B subunit of archaeal Topoisomerase VI, with Rec104 similar to a GHKL domain but without conserved ATPase motifs. Unexpectedly, the Spo11 complex is monomeric (1:1:1:1 stoichiometry), indicating that dimerization may control DSB formation. Reconstitution of DNA binding reveals topoisomerase-like preferences for duplex-duplex junctions and bent DNA. Spo11 also binds noncovalently but with high affinity to DNA ends mimicking cleavage products, suggesting a mechanism to cap DSB ends. Mutations that reduce DNA binding in vitro attenuate DSB formation, alter DSB processing, and reshape the DSB landscape in vivo. Our data reveal structural and functional similarities between the Spo11 core complex and Topo VI, but also highlight differences reflecting their distinct biological roles.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Feb 24 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Structural and functional characterization of the Spo11 core complex'. Together they form a unique fingerprint.

Cite this