Stereotactic Body Radiation Therapy for Nonspine Bone Metastases: International Practice Patterns to Guide Treatment Planning

Timothy K. Nguyen, Arjun Sahgal, Roi Dagan, Wietse Eppinga, Matthias Guckenberger, Jin Ho Kim, Simon S. Lo, Kristin J. Redmond, Shankar Siva, Bradley J. Stish, Chia Lin Tseng

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Purpose: Stereotactic body radiation therapy (SBRT) is increasingly used for nonspine bone metastases (NSBM); however, there are limited data informing treatment planning. We surveyed international experts to better understand worldwide practice patterns in delivering NSBM-SBRT. Methods and Materials: Nine international radiation oncologists were invited to participate based on demonstrated expertise with NSBM-SBRT. Experts were sent gross tumor volume contours and planning computed tomography and magnetic resonance images for 11 NSBM cases that covered a range of bony sites, including metastases to long bones (femur, humerus), pelvic bones (ilium, ischium, acetabulum, pubic symphysis), and thoracic bones (rib, sternum, scapula, clavicle). Experts were surveyed regarding treatment planning decisions and dose-fractionation selection. Descriptive analysis was conducted on the survey data. Results: All experts participated and completed the survey. Most (56%) routinely fused magnetic resonance imaging with planning computed tomography imaging for target delineation. Dose fractionation schedules included single-fraction (18-24 Gy/1), 2 fractions (24 Gy/2), 3 fractions (28-30 Gy/3), 5 fractions (30-50 Gy/5), and 10 fractions (42-50 Gy/10). Although doses varied considerably, all had a biological equivalent dose of ≤100 Gy10. Five-fraction schedules were most common, specifically 35 Gy/5, with 56% opting for this dose-fractionation in at least 1 case. Other dose-fractionation schedules used by at least 3 experts were 20 Gy/1, 30 Gy/3, and 30 Gy/5. Three experts prescribed 2 dose volumes using a simultaneous integrated boost. The 2 dose volumes were either the gross tumor volume and clinical target volume (CTV) or a smaller CTV (CTV1) encompassed within a larger CTV (CTV2) (eg, 30 Gy/3 to gross tumor volume or CTV1 and 15-24 Gy/3 to CTV or CTV2). Dose de-escalation was recommended by all experts in the setting of previous SBRT and by most in the context of previous convevoltherapy or in weight-bearing bones, especially if moderate-to-severe cortical erosion was present. Conclusions: Significant heterogeneity exists worldwide in radiation technique and dose-fractionation for NSBM-SBRT, which supports the need for consensus guidelines to inform practice and trial design. Nonetheless, these data demonstrate expert agreement on selecting dose schedules with a biologically effective dose ≤100 Gy10, reasons for dose de-escalation, and in determining acceptable dose schedules based on bony site.

Original languageEnglish (US)
Pages (from-to)e452-e460
JournalPractical Radiation Oncology
Volume10
Issue number6
DOIs
StatePublished - Nov 1 2020

ASJC Scopus subject areas

  • Oncology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Stereotactic Body Radiation Therapy for Nonspine Bone Metastases: International Practice Patterns to Guide Treatment Planning'. Together they form a unique fingerprint.

Cite this