Staphylococcal enterotoxin-B (SEB) alters [14C]-choline transport and phosphatidylcholine metabolism in cultured human kidney proximal tubular cells

Research output: Contribution to journalArticle

Abstract

We studied the effects of SEB on [14C]-choline transport and metabolism of choline containing phospholipids in cultured human kidney proximal tubular (PT) cells. SEB increased the uptake of [14C]-choline in PT cells as a function of toxin concentration, incubation time, and pH. The maximum increase in uptake (3.5-5-fold compared to control) was observed at a toxin concentration of 10 ug/104 cells, at 4 h and at pH 7.4. Two toxins structurally related to SEB, Staphylococcal enterotoxin-A and toxic shock toxin (TST-1) failed to alter [14C]-choline uptake in PT cells, a finding which indicates that SEB-mediated alteration in choline uptake in PT cells has high specificity. We found that SEB markedly and significantly increased the incorporation of [14C]-choline into phosphatidylcholine, Iysophosphatidylcholine and sphingomyelin, but not into phosphatidylethanolamine. Maximum increase in the incorporation of [14C]-choline into phosphatidlycholine (3-fold compared to control) was observed at 4 h after incubation with toxin. In contrast, SEB did not alter the incorporation of [14C]-choline in phosphatidylethanolamine. The cellular level of phosphatidylcholine was also increased (2-fold compared to control) in PT cells incubated with SEB. This was accompanied by a 3-to-4-fold increase in CTP: phosphocholine, cytidyltransferase activity. In sum, SEB specifically stimulates phosphatidylcholine synthesis in PT cells by increasing choline uptake or by activating CTP: phosphocholine, cytidyltransferase, or both. We believe this is the first-ever report indicating that a toxin can increase phosphatidylcholine synthesis. This high order of specificity may be in part due to the presence of a glycosphingolipid receptor in PT cells that specifically binds SEB but not SEA or TST-1. Accordingly, it is tempting to speculate that the receptor may somehow be involved in the SEB-mediated regulation of phosphatidylcholine synthesis.

Original languageEnglish (US)
Pages (from-to)115-120
Number of pages6
JournalMolecular and Cellular Biochemistry
Volume146
Issue number2
DOIs
StatePublished - May 1995

Fingerprint

Choline
Phosphatidylcholines
Metabolism
Kidney
Choline-Phosphate Cytidylyltransferase
Cytidine Triphosphate
staphylococcal enterotoxin B
Glycosphingolipids
Sphingomyelins
Phospholipids

Keywords

  • kidney proximal tubular cells
  • phosphatidylcholine
  • staphylococcal enterotoxin-b

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Clinical Biochemistry
  • Cell Biology

Cite this

@article{29aa47949f344c9685ab6af8b134d8bb,
title = "Staphylococcal enterotoxin-B (SEB) alters [14C]-choline transport and phosphatidylcholine metabolism in cultured human kidney proximal tubular cells",
abstract = "We studied the effects of SEB on [14C]-choline transport and metabolism of choline containing phospholipids in cultured human kidney proximal tubular (PT) cells. SEB increased the uptake of [14C]-choline in PT cells as a function of toxin concentration, incubation time, and pH. The maximum increase in uptake (3.5-5-fold compared to control) was observed at a toxin concentration of 10 ug/104 cells, at 4 h and at pH 7.4. Two toxins structurally related to SEB, Staphylococcal enterotoxin-A and toxic shock toxin (TST-1) failed to alter [14C]-choline uptake in PT cells, a finding which indicates that SEB-mediated alteration in choline uptake in PT cells has high specificity. We found that SEB markedly and significantly increased the incorporation of [14C]-choline into phosphatidylcholine, Iysophosphatidylcholine and sphingomyelin, but not into phosphatidylethanolamine. Maximum increase in the incorporation of [14C]-choline into phosphatidlycholine (3-fold compared to control) was observed at 4 h after incubation with toxin. In contrast, SEB did not alter the incorporation of [14C]-choline in phosphatidylethanolamine. The cellular level of phosphatidylcholine was also increased (2-fold compared to control) in PT cells incubated with SEB. This was accompanied by a 3-to-4-fold increase in CTP: phosphocholine, cytidyltransferase activity. In sum, SEB specifically stimulates phosphatidylcholine synthesis in PT cells by increasing choline uptake or by activating CTP: phosphocholine, cytidyltransferase, or both. We believe this is the first-ever report indicating that a toxin can increase phosphatidylcholine synthesis. This high order of specificity may be in part due to the presence of a glycosphingolipid receptor in PT cells that specifically binds SEB but not SEA or TST-1. Accordingly, it is tempting to speculate that the receptor may somehow be involved in the SEB-mediated regulation of phosphatidylcholine synthesis.",
keywords = "kidney proximal tubular cells, phosphatidylcholine, staphylococcal enterotoxin-b",
author = "M. Khullar and Chatterjee, {Subroto B}",
year = "1995",
month = "5",
doi = "10.1007/BF00944603",
language = "English (US)",
volume = "146",
pages = "115--120",
journal = "Molecular and Cellular Biochemistry",
issn = "0300-8177",
publisher = "Springer Netherlands",
number = "2",

}

TY - JOUR

T1 - Staphylococcal enterotoxin-B (SEB) alters [14C]-choline transport and phosphatidylcholine metabolism in cultured human kidney proximal tubular cells

AU - Khullar, M.

AU - Chatterjee, Subroto B

PY - 1995/5

Y1 - 1995/5

N2 - We studied the effects of SEB on [14C]-choline transport and metabolism of choline containing phospholipids in cultured human kidney proximal tubular (PT) cells. SEB increased the uptake of [14C]-choline in PT cells as a function of toxin concentration, incubation time, and pH. The maximum increase in uptake (3.5-5-fold compared to control) was observed at a toxin concentration of 10 ug/104 cells, at 4 h and at pH 7.4. Two toxins structurally related to SEB, Staphylococcal enterotoxin-A and toxic shock toxin (TST-1) failed to alter [14C]-choline uptake in PT cells, a finding which indicates that SEB-mediated alteration in choline uptake in PT cells has high specificity. We found that SEB markedly and significantly increased the incorporation of [14C]-choline into phosphatidylcholine, Iysophosphatidylcholine and sphingomyelin, but not into phosphatidylethanolamine. Maximum increase in the incorporation of [14C]-choline into phosphatidlycholine (3-fold compared to control) was observed at 4 h after incubation with toxin. In contrast, SEB did not alter the incorporation of [14C]-choline in phosphatidylethanolamine. The cellular level of phosphatidylcholine was also increased (2-fold compared to control) in PT cells incubated with SEB. This was accompanied by a 3-to-4-fold increase in CTP: phosphocholine, cytidyltransferase activity. In sum, SEB specifically stimulates phosphatidylcholine synthesis in PT cells by increasing choline uptake or by activating CTP: phosphocholine, cytidyltransferase, or both. We believe this is the first-ever report indicating that a toxin can increase phosphatidylcholine synthesis. This high order of specificity may be in part due to the presence of a glycosphingolipid receptor in PT cells that specifically binds SEB but not SEA or TST-1. Accordingly, it is tempting to speculate that the receptor may somehow be involved in the SEB-mediated regulation of phosphatidylcholine synthesis.

AB - We studied the effects of SEB on [14C]-choline transport and metabolism of choline containing phospholipids in cultured human kidney proximal tubular (PT) cells. SEB increased the uptake of [14C]-choline in PT cells as a function of toxin concentration, incubation time, and pH. The maximum increase in uptake (3.5-5-fold compared to control) was observed at a toxin concentration of 10 ug/104 cells, at 4 h and at pH 7.4. Two toxins structurally related to SEB, Staphylococcal enterotoxin-A and toxic shock toxin (TST-1) failed to alter [14C]-choline uptake in PT cells, a finding which indicates that SEB-mediated alteration in choline uptake in PT cells has high specificity. We found that SEB markedly and significantly increased the incorporation of [14C]-choline into phosphatidylcholine, Iysophosphatidylcholine and sphingomyelin, but not into phosphatidylethanolamine. Maximum increase in the incorporation of [14C]-choline into phosphatidlycholine (3-fold compared to control) was observed at 4 h after incubation with toxin. In contrast, SEB did not alter the incorporation of [14C]-choline in phosphatidylethanolamine. The cellular level of phosphatidylcholine was also increased (2-fold compared to control) in PT cells incubated with SEB. This was accompanied by a 3-to-4-fold increase in CTP: phosphocholine, cytidyltransferase activity. In sum, SEB specifically stimulates phosphatidylcholine synthesis in PT cells by increasing choline uptake or by activating CTP: phosphocholine, cytidyltransferase, or both. We believe this is the first-ever report indicating that a toxin can increase phosphatidylcholine synthesis. This high order of specificity may be in part due to the presence of a glycosphingolipid receptor in PT cells that specifically binds SEB but not SEA or TST-1. Accordingly, it is tempting to speculate that the receptor may somehow be involved in the SEB-mediated regulation of phosphatidylcholine synthesis.

KW - kidney proximal tubular cells

KW - phosphatidylcholine

KW - staphylococcal enterotoxin-b

UR - http://www.scopus.com/inward/record.url?scp=0029059535&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029059535&partnerID=8YFLogxK

U2 - 10.1007/BF00944603

DO - 10.1007/BF00944603

M3 - Article

C2 - 7565640

AN - SCOPUS:0029059535

VL - 146

SP - 115

EP - 120

JO - Molecular and Cellular Biochemistry

JF - Molecular and Cellular Biochemistry

SN - 0300-8177

IS - 2

ER -