Stability regulation of mRNA and the control of gene expression.

Chris Cheadle, Jinshui Fan, Yoon S. Cho-Chung, Thomas Werner, Jill Ray, Lana Do, Myriam Gorospe, Kevin G. Becker

Research output: Contribution to journalReview article

Abstract

Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. Standard techniques measure changes in total cellular poly(A) mRNA levels. The assumption that changes in gene expression as measured by these techniques are directly and well correlated with changes in rates of new gene synthesis form the basis of attempts to connect coordinated changes in gene expression with shared transcription regulatory elements. Yet systematic attempts at this approach remain difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Recent technical advances have led to the successful scale-up and application of nuclear run-on procedures directly to microarrays. This development has allowed a gene-by-gene comparison between new gene synthesis in the nucleus and measured changes in total cellular polyA mRNA. Results from these studies have begun to challenge the strict interpretation of changes in gene expression measured by conventional microarrays as being closely correlated with changes in mRNA transcription rate, but rather they tend to support the significant expansion of the role played by changes in mRNA stability regulation to standard analyses of gene expression. Gene expression profiles obtained from both polyA mRNA (whole-cell) and nuclear run-on (newly transcribed) RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in total cellular polyA mRNA in this system. Stability regulation was inferred by the absence of corresponding regulation of nuclear gene transcription activity for groups of genes strongly regulated at the whole cell level and which were also resistant to inhibition by Actinomycin D pre-treatment. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. It is proposed that the regulation of mRNA stability in response to external stimuli contributes significantly to observed changes in gene expression as measured by high throughput systems.

Original languageEnglish (US)
Pages (from-to)196-204
Number of pages9
JournalAnnals of the New York Academy of Sciences
Volume1058
DOIs
StatePublished - Nov 2005

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science

Fingerprint Dive into the research topics of 'Stability regulation of mRNA and the control of gene expression.'. Together they form a unique fingerprint.

  • Cite this

    Cheadle, C., Fan, J., Cho-Chung, Y. S., Werner, T., Ray, J., Do, L., Gorospe, M., & Becker, K. G. (2005). Stability regulation of mRNA and the control of gene expression. Annals of the New York Academy of Sciences, 1058, 196-204. https://doi.org/10.1196/annals.1359.026