Sprouty-2 regulates HIV-specific T cell polyfunctionality

Yen Ling Chiu, Liang Shan, Hailiang Huang, Carl Haupt, Catherine Bessell, David H. Canaday, Hao Zhang, Ya-Chi Ho, Jonathan D. Powell, Mathias Oelke, Joseph B. Margolick, Joel N. Blankson, Diane E. Griffin, Jonathan P. Schneck

Research output: Contribution to journalArticlepeer-review

Abstract

The ability of individual T cells to perform multiple effector functions is crucial for protective immunity against viruses and cancer. This polyfunctionality is frequently lost during chronic infections; however, the molecular mechanisms driving T cell polyfunctionality are poorly understood. We found that human T cells stimulated by a high concentration of antigen lacked polyfunctionality and expressed a transcription profile similar to that of exhausted T cells. One specific pathway implicated by the transcription profile in control of T cell polyfunctionality was the MAPK/ERK pathway. This pathway was altered in response to different antigen concentrations, and polyfunctionality correlated with upregulation of phosphorylated ERK. T cells that were stimulated with a high concentration of antigen upregulated sprouty-2 (SPRY2), a negative regulator of the MAPK/ERK pathway. The clinical relevance of SPRY2 was confirmed by examining SPRY2 expression in HIV-specific T cells, where high levels of SPRY2 were seen in HIV-specific T cells and inhibition of SPRY2 expression enhanced the HIV-specific polyfunctional response independently of the PD-1 pathway. Our findings indicate that increased SPRY2 expression during chronic viral infection reduces T cell polyfunctionality and identify SPRY2 as a potential target for immunotherapy.

Original languageEnglish (US)
Pages (from-to)198-208
Number of pages11
JournalJournal of Clinical Investigation
Volume124
Issue number1
DOIs
StatePublished - Jan 2 2014

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Sprouty-2 regulates HIV-specific T cell polyfunctionality'. Together they form a unique fingerprint.

Cite this