Sphingosine-1-phosphate activates mouse vagal airway afferent C-fibres via S1PR3 receptors

Mayur J. Patil, Sonya Meeker, Diana Bautista, Xinzhong Dong, Bradley J. Undem

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Key points: Sphingosine-1-phosphate (S1P) strongly activates mouse vagal C-fibres in the airways. Airway-specific nodose and jugular C-fibre neurons express mRNA coding for the S1P receptor S1PR3. S1P activation of nodose C-fibres is inhibited by a S1PR3 antagonist. S1P activation of nodose C-fibres does not occur in S1PR3 knockout mice. Abstract: We evaluated the effect of sphingosine-1-phosphate (S1P), a lipid that is elevated during airway inflammatory conditions like asthma, for its ability to stimulate vagal afferent C-fibres in mouse lungs. Single cell RT-PCR on lung-specific vagal afferent neurons revealed that both TRPV1-expressing and TRPV1-non-expressing nodose neurons express mRNA coding for the S1P receptor S1PR3. TRPV1-expressing airway-specific jugular ganglion neurons also express S1PR3 mRNA. S1PR1 and S1PR2 mRNAs were also found to be expressed but only in a limited subset (32% and 22%, respectively) of airway-specific vagal sensory neurons; whereas S1PR4 and S1PR5 were rarely expressed. We used large scale two-photon imaging of the nodose ganglia from our ex vivo preparation isolated from Pirt-Cre;R26-GCaMP6s transgenic mice, which allows for simultaneous monitoring of calcium transients in ∼1000 neuronal cell bodies in the ganglia during tracheal perfusion with S1P (10 μM). We found that S1P in the lungs strongly activated 81.5% of nodose fibres, 70% of which were also activated by capsaicin. Single fibre electrophysiological recordings confirmed that S1P evoked action potential (AP) generation in a concentration-dependent manner (0.1–10 μM). Action potential generation by S1P in nodose C-fibres was effectively inhibited by the S1PR3 antagonist TY 52156 (10 μM). Finally, in S1PR3 knockout mice, S1P was not able to activate any of the airway nodose C-fibres analysed. These results support the hypothesis that S1P may play a role in evoking C-fibre-mediated airway sensations and reflexes that are associated with airway inflammatory diseases.

Original languageEnglish (US)
Pages (from-to)2007-2019
Number of pages13
JournalJournal of Physiology
Volume597
Issue number7
DOIs
StatePublished - Apr 1 2019

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'Sphingosine-1-phosphate activates mouse vagal airway afferent C-fibres via S1PR3 receptors'. Together they form a unique fingerprint.

Cite this